Fast Approximations of Quantifier Elimination

Hari Govind V K* Arie Gurfinkel

@CAV 2023

[^0]
What is existential quantifier elimination (qelim)?

Given a formula $\varphi \triangleq \exists \boldsymbol{v} \cdot A(\boldsymbol{v})$, find a quantifier-free ψ that is equivalent to φ.

original

qelim

$$
\begin{aligned}
& \exists x \cdot f(x)>5 \wedge x \approx y \\
& \exists x \cdot x>5 \wedge y>x \\
& \exists a \cdot a[i] \approx w \wedge a[j] \approx x \wedge a[k] \approx y \wedge a[l] \approx z
\end{aligned}
$$

$$
f(y)>5
$$

$$
y>6
$$

$\exists x \cdot f(x)>5$

$$
\begin{aligned}
& (i \approx j \rightarrow w \approx x) \wedge(i \approx k \rightarrow w \approx y) \wedge \\
& (i \approx l \rightarrow w \approx z) \wedge(j \approx k \rightarrow x \approx y) \wedge \\
& (j \approx l \rightarrow y \approx z) \wedge(i \approx j \rightarrow y \approx z)
\end{aligned}
$$

Does not exist

Why qelim?

Widely used in automated reasoning tasks

Playing with Quantified Satisfaction
Nikolaj Bjørner ${ }^{1}$ and Mikoláš Janota ${ }^{2}$
${ }^{1}$ Microsoft Research, Redmond, USA
${ }^{2}$ Microsoft Research, Cambridge, UK
Abstract
We develop an algorithm for satisfiability of quantified formulas. The algorithm is based on recent progress in solving Quantified Boolean Formulas, but it generalizes beyond propositional logic to theories, such as linear arithmetic over integers (Presburger arithmetic), linear arithmetic over reals, algebraic data-types and arrays. Compared with previous algorithms for satisfiability of quantified arithmetical formulas our new implementation outperforms previous implementations in Z 3 by a significant margin.

Solving Exists/Forall Problems With Yices

```
        Extended Abstract
        Bruno Dutertre
        Computer Science Laboratory
        Bruno. Duterrmeossri. .omf
            Abstract
```


Introduction
The traditional SMT problem is to determine whether a quantifier-free formula $\Phi(x)$ is sat
isfable. Some solvers can also handle frist-rorder formulas with arbitrary quantifiers. We
isfable. Some solvers can also handle firtorterder formulus with arbititrary uqaatitiers.
are concerned with a simpler case, namely, formulas of the form $\forall y y(\Phi x, y)$, where $\Phi(x, y$

SMT-Based Model Checking for Recursive Programs

Anvesh Komuravelli, Arie Gurfinkel, and Sagar Chaki
Carnegie Mellon University, Pittsburgh, PA, USA

Abstract. We present an SMT-based symbolic model checking algo-
Abstract. We present an SMT-based symbolic model checking algorithm for safety verification of recursive programs. The algorithm is
modular and analyzes procedures individually. Unlike other SMT-based modular and analyzes procedures individually. Unlike other SMT-based
approaches, it maintains both over- and under-approximations of procedure summaries. Under-approximations are used to analyze procedure calls without inlining. Over-approximations are used to block infeasi-

```
Abstract
Synthesis of proram fragments from specifcations can make
{
requires detailed specifications, which for large programs become
difficutt 1 wite difificult to write.
We therefore
is integration intoct the compracticrsal app genications of synnesisis lie in languages. To make this integration feasible, we aim to identif
```


Dealing with qelim

Expensive in general
propositional: PSPACE-complete LIA: O(m $\left.{ }^{2^{n}}\right)$
... but cheap in some cases

Existing solvers try their luck with a light preprocess based on the variable substitution rule:
$\exists x \cdot x \approx t \wedge \varphi \equiv \varphi[x \mapsto t] \quad$ (*) provided t is x -free

Btw, they should replace the math in this image by qelim problems...

Dealing with qelim by substitution

$$
\exists x \cdot x \approx t \wedge \varphi \equiv \varphi[x \mapsto t]
$$

Let's try: $\exists x, y \cdot A(x, y)$ with

$$
A(x, y) \triangleq y \approx f(x) \wedge x \approx g(y) \wedge f(x) \approx 6
$$

Trial \#1: $A[y \rightarrow f(x)]: x \approx g(f(x)) \wedge f(x) \approx 6 \quad$ No more defs
Trial \#2: $A[x \rightarrow g(y)]: y \approx f(g(y)) \wedge f(g(y)) \approx 6$ No more defs
Trial \#3: $A[y \rightarrow 6][x \rightarrow g(6)]: 6 \approx f(g(6))$ qelim!

$$
\begin{array}{|ll}
\hline \text { by transitivity } & \begin{array}{l}
\text { Relies on definitions syntactically existing in the formula } \\
\text { Depends on substitution order } \\
\text { Difficult to deal with circular equalities }
\end{array}
\end{array}
$$

Our aim: fast quantifier reduction

Quickly try to remove variables (reduction of variables) Consider all definitions

Egraphs!

What are egraphs?

Extracting terms from an egraph

Find one desired node per class \rightarrow representative (rep)

To extract a term of a node, use the terms of reps of its children

Notation

repr: $N \rightarrow N \quad$ (representative function)
repr $=\{N(i), N(j)\}$ (we describe rep functions by the set of representatives)
ntt(node,repr) (node-to-term, we omit repr if obvious)

Extracting terms from an egraph

$$
\begin{aligned}
& \text { Example repr }=\{N(4), N(5)\} \quad \begin{array}{l}
\operatorname{repr}(N(2))=N(4) \\
\operatorname{repr}(N(3))=N(4) \\
\operatorname{repr}(N(4))=N(4) \\
\operatorname{repr}(1(1))=N(5) \\
\operatorname{repr}(N(5))=N(5)
\end{array} \\
& \operatorname{ntt}(N(5), \text { repr })=x
\end{aligned}
$$

Extracting formulas from an egraph

Given a rep function repr, produce for each node: $n t t(r e p r(n)) \approx n t t(n)$

Notation

```
G.to_formula(repr) (extract a formula from an egraph)
    (•) 䬱 existential closure
```


Extracting formulas from an egraph

$\mathrm{G}=\operatorname{egraph}(y \approx f(x) \wedge x \approx g(y) \wedge f(x) \approx 6)$


```
repr = {N(4),N(5)}
G.to_formula(repr) =
    * < < < f(x)^6\approx(N(4))
```


Extracting for qelim

$\mathrm{G}=\operatorname{egraph}(y \approx f(x) \wedge x \approx g(y) \wedge f(x) \approx 6)$

$$
\begin{aligned}
& \text { repr }=\{N(4), N(1)\} \\
& \text { G.to_formula(repr) }= \\
& \underbrace{6 \approx f(g(6)) \wedge 6 \approx y}_{\begin{array}{c}
\operatorname{class}(N(4))
\end{array}} \wedge \underbrace{g(f(6)) \approx x}_{\operatorname{class}^{g(N(5))}} \\
& \begin{array}{l}
\text { bigger formula but more suitable for qelim! } \\
\text { just drop }(6 \approx y \wedge g(f(6)) \approx x)
\end{array}
\end{aligned}
$$

QEL - Quantifier reduction using egraphs

Problem that we are trying to solve:

Given a quantifier free formula $A(v)$, find $B(\boldsymbol{u})$ with $\boldsymbol{u} \subseteq \boldsymbol{v}$ and $B(\boldsymbol{u})^{\exists} \equiv A(\boldsymbol{v})^{\exists}$ if \boldsymbol{u} is empty, we have qelim

Using transitivity \& congruence axioms

QEL - Quantifier reduction using egraphs

1. Build egraph

2. Find a core

3. Find (ground) definitions

4. [Opt] Refine

5. Output core

$$
6 \approx f(g(6))
$$

QEL - Quantifier reduction using egraphs

1. Build egraph

2. Output core

$$
6 \approx f(g(6))
$$

3. [Opt] Refine

4. Find a core

Constructively ground

A class is ground if it contains a node that is constructively ground

$$
\gamma(x, y, z) \triangleq z \approx \operatorname{read}(a, x) \wedge k+1 \approx \operatorname{read}(a, y) \wedge x \approx y \wedge 3>z
$$

Constructively ground

A class is ground if it contains a node that is constructively ground

$$
\gamma(x, y, z) \triangleq z \approx \operatorname{read}(a, x) \wedge k+1 \approx \operatorname{read}(a, y) \wedge x \approx y \wedge 3>z
$$

Constructively ground

A class is ground if it contains a node that is constructively ground

$$
\gamma(x, y, z) \triangleq z \approx \operatorname{read}(a, x) \wedge k+1 \approx \operatorname{read}(a, y) \wedge x \approx y \wedge 3>z
$$

Find repr maximizing constr. ground

Find repr maximizing constr. ground

Let's choose constr. ground nodes as representatives!

Wait... can we extract using any representative function?

Not all representative functions
guarantee that ntt-extraction
terminates

Inadmissible representative function

$$
\begin{aligned}
& \text { Example repr }=\{\mathrm{N}(1), \mathrm{N}(3)\} \\
& \operatorname{ntt}(\mathrm{N}(1))=\operatorname{ntt}(\mathrm{g}(\operatorname{ntt}(\mathrm{~N}(3)))=\operatorname{ntt}(\mathrm{g}(\mathrm{f}(\operatorname{ntt}(\mathrm{~N}(1))) \ldots
\end{aligned}
$$

Admissible representative functions

A representative function repr is admissible iff:

- unique rep per class
- repr defines the same classes as root
- a node is not a representative of any of its repr-descendants

Intuitively, the term of a node is not necessary to produce its own term

Formally, the graph $G_{r e p r}=\left\langle N, E_{\text {repr }}\right\rangle$ with

$$
E_{\text {repr }} \triangleq\{(n, \operatorname{repr}(c) \mid c \in \operatorname{children}(n), n \in N\} \text { is acyclic }
$$

Admissible representative functions

$$
\text { Example repr }=\{\mathrm{N}(1), \mathrm{N}(3)\}
$$

$$
\operatorname{ntt}(N(1))=\operatorname{ntt}(g(\operatorname{ntt}(N(3)))=\operatorname{ntt}(g(f(n t t(N(1))) \ldots
$$

Admissible representative functions

$$
\text { repr }=\{N(4), N(5)\}
$$

Admissibility is a necessary and sufficient condition for termination of to_formula

Choosing reps. based on (smaller) AST size guarantees admissibility...

Find repr maximizing constr. ground

$$
\text { repr }=\{N(4), N(1)\}
$$

Find repr maximizing constr. ground

$$
\text { repr }=\{N(4), N(1)\}
$$

Why do constr. ground reps help?

Since terms of reps are used in ntt, variables with ground rep appear only once using to_formula: G.to_formula(repr) $=6 \approx f(g(6)) \wedge 6 \approx y \wedge g(f(6)) \approx x$

QEL guarantees

A variable is eliminated if:

- It has a ground definition
- Its node is not reachable in $G_{\text {repr }}$ by any of the nodes in the core*

If all variables meet the conditions, we find a qelim

QEL is stronger than variable substitution

$\exists x \cdot x \approx g(f(x)) \wedge f(x) \approx 6$ QEL finds $6 \approx g(f(6))$
For $\exists x, y \cdot f(x) \approx f(y) \wedge x \approx y$, QEL produces T, which is a qelim

Model-Based Projection

Under-approximation if variables were not eliminated
Example: $\exists x \cdot f(x)>5$: a projection is $f(0)>5$

Presented as rewrite rules

Rules are defined for different theories separately

Implementing MBP using egraphs

Repeat until variables eliminated (out of the core*):
(1) Apply equivalence-preserving MBP rules until saturation
(2) Remove nodes from core based on rules
(3) If there are variables, apply model-splitting MBP rules

Apply only to not constr. ground nodes in the core

Update constr. groundness

Very easy to combine theories, just as for SMT solving! We implemented for ADTs and Arrays

Full elimination is guaranteed (under-approx.)

Implementation \& evaluation - QSAT

Solving formulas alternating exists and forall quantifiers

Playing with Quantified Satisfaction

Category	Count	Z3EG		Z3		YICESQS		
			SAT	UNSAT	SAT	UNSAT	SAT	UNSAT
LIA	416	$\mathbf{1 5 0}$	$\mathbf{2 6 6}$	$\mathbf{1 5 0}$	$\mathbf{2 6 6}$	107	102	
LRA	$\mathbf{2 4 1 9}$	$\mathbf{7 9 5}$	$\mathbf{1 5 8 9}$	$\mathbf{7 9 3}$	$\mathbf{1 5 9 5}$	$\mathbf{8 0 8}$	$\mathbf{1 6 1 0}$	

Nikolaj Bjorner ${ }^{1}$ and Mikolás Janota ${ }^{2}$
Microsoft Research, Redmond, USA ${ }^{2}$ Microsoft Research, Cambriige, UK Compared with previous algorithms for satisfiability of quantified arithmetical formulas our new implementation outperforms previous implementations in Z3 by a significant margin.

Category	Count	Z3EG		Z3	
		SAT	UNSAT	SAT	UNSAT
LIA-ADT	416	$\mathbf{1 5 0}$	$\mathbf{2 6 6}$	$\mathbf{1 5 0}$	56
LRA-ADT	$\mathbf{2 4 1 9}$	$\mathbf{7 5 7}$	$\mathbf{1 4 1 5}$	$\mathbf{7 9 3}$	$\mathbf{9 6 4}$

Implementation \& evaluation - Spacer

CHC solving over ADTs, LIA and Arrays

| Category | Count | Z3EG | | Z3 | | ELDARICA | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| | | SAT | UNSAT | SAT | UNSAT | SAT | UNSAT |
| Solidity | 3468 | 2324 | 1133 | 2314 | 1114 | $\mathbf{2} 329$ | $\mathbf{1} 134$ |
| \rightarrow abi | 127 | 19 | 108 | 19 | 88 | 19 | 108 |
| LIA-lin-Arrays | 488 | $\mathbf{2 1 4}$ | 72 | 212 | $\mathbf{7 5}$ | 147 | 68 |

45

SolCMC: Solidity Compiler's Model Checker

Conclusion

Characterized all possible extractions from egraphs via admissible representative functions
Presented QEL, an algorithm for quantifier reduction that is complete relative to ground definitions entailed by formulas

$$
\text { O } 2 \mathrm{smamam}
$$

$$
\text { :ode } \odot \text { Issues } 126 \quad\{8 \text { Pull requests } 3 \quad \text { Discussions } \odot \text { Actions } \boxplus \text { Projects } 1 \square \text { wiki } \subset
$$

QEL: Fast Approximated Quantifier Elimination \#6820
83 Open agurfinkel wants to merge 34 commits into z3Prover: :aster from agurininel: :ael [口

(3) agurfinkel commented 1 minute ago

Implemented and evaluated within Z3: We used it to improve QSAT and the Spacer CHC solver

Fast Approximations of Quantifier Elimination

Refining repr

$$
\psi(x, y) \triangleq x \approx g(f(x)) \wedge y \approx h(f(y)) \wedge f(x) \approx f(y)
$$

Nothing constr.

repr $=\{N(3), N(5), N(6)\}$
(3) refine

$$
r e p r=\{N(1), N(5), N(6)\}
$$

$r e p r=\{N(1), N(5), N(4)\}$

try refine

3 A Quantified Satisfiability Game

Playing with Quantified Satisfaction

Nikolaj Bjørner ${ }^{1}$ and Mikoláš Janota ${ }^{2}$

```
Algorithm 1: QSAT
    \(j \leftarrow 1\);
    \(M \leftarrow\) null;
    while True do
        if \(F_{j} \wedge \operatorname{strategy}(M, j)\) is unsat then
            if \(j=1\) then
                return \(G\) is false
            if \(j=2\) then
            return \(G\) is true
            \(C \leftarrow \operatorname{Core}\left(F_{j}, \operatorname{strategy}(M, j)\right)\);
            \(J \leftarrow M b p(M, \operatorname{tail}(j), C)\);
            \(j \leftarrow\) index of max variable in \(J \cup\{1,2\}\) of same parity as \(j\);
            \(F_{j} \leftarrow F_{j} \wedge \neg J ;\)
            \(M \leftarrow\) null;
        else
            \(M \leftarrow\) the current model;
            \(j \leftarrow j+1 ;\)
\({ }^{1}\) Microsoft Research, Redmond, USA
\({ }^{2}\) Microsoft Research, Cambridge, UK

\section*{Abstract}

We develop an algorithm for satisfiability of quantified formulas. The algorithm is based on recent progress in solving Quantified Boolean Formulas, but it generalizes beyond propositional logic to theories, such as linear arithmetic over integers (Presburger arithmetic), linear arithmetic over reals, algebraic data-types and arrays. Compared with previous algorithms for satisfiability of quantified arithmetical formulas our new implementation outperforms previous implementations in Z 3 by a significant margin.

\section*{Bonus: Formulas with Minimal Variables Appearing?}
\[
\varphi(x, y, z) \triangleq x \approx f(z) \wedge y \approx g(z) \wedge z \approx h(x, y)
\]

Possible outputs, depending on refinement order of repr:
\[
\begin{gathered}
\varphi_{1}(z) \triangleq z \approx h(f(z), g(z)) \\
\varphi_{2}(x, y) \triangleq x \approx f(h(x, y)) \wedge y \approx g(h(x, y))
\end{gathered}
\]

Open question: hard due to sharing?

\section*{Find repr maximizing constr. ground}

```

egraph :: process(repr, todo)
7: while todo }\not=\emptyset\mathrm{ do
8: n:= todo.pop()
if repr (n)\not=\star then continue
10: for }\mp@subsup{n}{}{\prime}\in\operatorname{class}(n)\mathrm{ do repr (n')}:=
11: for }\mp@subsup{n}{}{\prime}\in\operatorname{class}(n) d
for }p\in\mathrm{ parents(}\mp@subsup{n}{}{\prime}\mathrm{) do
if }\forallc\in\operatorname{children}(p)\cdot\operatorname{repr}(c)\not=\star\mathrm{ then
todo.push(p)
ret repr

```

\section*{Find repr maximizing constr. ground}


\section*{QEL examples}
\[
\psi(x, y) \triangleq x \approx g(f(x)) \wedge y \approx h(f(y)) \wedge f(x) \approx f(y)
\]

\[
\psi^{\prime}(y) \triangleq y \approx h(f(y)) \wedge f(y) \approx f(g(f(y)))
\]
\[
\varphi(x, y) \triangleq y \approx f(x) \wedge x \approx g(y) \wedge f(x) \approx 6
\]


\section*{qelim!}

\(\gamma^{\prime}(x) \triangleq k+1 \approx \operatorname{read}(a, x) \wedge 3>k+1\)```


[^0]:    * equal contribution

