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What is existential quantifier 
elimination (qelim)?
Given a formula 𝜑 ≜ ∃𝒗 ⋅ 𝐴 𝒗 , find a quantifier-free 𝜓 that is equivalent to 𝜑.
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∃𝑥 ⋅ 𝑓 𝑥 > 5 ∧ 𝑥 ≈ 𝑦 𝑓 𝑦 > 5

qelim

∃𝑥 ⋅ 𝑥 > 5 ∧ 𝑦 > 𝑥  𝑦 > 6

(𝑖 ≈ 𝑗 → 𝑤 ≈ 𝑥) ∧ 𝑖 ≈ 𝑘 → 𝑤 ≈ 𝑦 ∧
𝑖 ≈ 𝑙 → 𝑤 ≈ 𝑧 ∧ 𝑗 ≈ 𝑘 → 𝑥 ≈ 𝑦 ∧
(𝑗 ≈ 𝑙 → 𝑦 ≈ 𝑧) ∧ (𝑖 ≈ 𝑗 → 𝑦 ≈ 𝑧)

∃𝑎 ⋅ 𝑎 𝑖 ≈ 𝑤 ∧ 𝑎 𝑗 ≈ 𝑥 ∧ 𝑎 𝑘 ≈ 𝑦 ∧ 𝑎 𝑙 ≈ 𝑧

∃𝑥 ⋅ 𝑓(𝑥) > 5 Does not exist

original



Why qelim?
Widely used in automated reasoning tasks
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Dealing with qelim
Expensive in general
 propositional: PSPACE-complete 
 LIA: O(m2 )

… but cheap in some cases
Existing solvers try their luck with a light preprocessing (QELITE in Z3), 
based on the variable substitution rule: 
∃𝑥 ⋅ 𝑥 ≈ 𝑡 ∧ 𝜑 ≡ 𝜑 𝑥 ↦ 𝑡 	 (*) provided t is x-free
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Btw, they should replace 
the math in this image by 
qelim problems…

n



Dealing with qelim by substitution

Let’s try: ∃𝑥, 𝑦 ⋅ 𝐴(𝑥, 𝑦)	with	
𝐴 𝑥, 𝑦 ≜ 𝑦 ≈ 𝑓 𝑥 ∧ 𝑥 ≈ 𝑔 𝑦 ∧ 𝑓 𝑥 ≈ 6

Trial #1: 𝐴 𝑦 → 𝑓 𝑥 ∶

Trial #2: 𝐴 𝑥 → 𝑔 𝑦 ∶

Trial #3: 𝐴 𝑦 → 6 𝑥 → 𝑔(6) :
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Relies on definitions syntactically existing in the formula
Depends on substitution order
Difficult to deal with circular equalities

∃𝑥 ⋅ 𝑥 ≈ 𝑡 ∧ 𝜑 ≡ 𝜑 𝑥 ↦ 𝑡

No more defs

No more defs

qelim!

by transitivity

𝑦 ≈ 𝑓 𝑔 𝑦 ∧ 𝑓 𝑔 𝑦 ≈ 6

𝑥 ≈ 𝑔 𝑓 𝑥 ∧ 𝑓 𝑥 ≈ 6

6 ≈ 𝑓 𝑔 6



Our aim: fast quantifier reduction

Quickly try to remove variables    (reduction of variables)
Consider all definitions
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Egraphs!



What are egraphs?
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𝜑 𝑥, 𝑦 ≜ 𝑦 ≈ 𝑓 𝑥 ∧ 𝑥 ≈ 𝑔 𝑦 ∧ 𝑓 𝑥 ≈ 6
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x class(N(1)) = {N(1), N(5)} 
class(N(2)) = {N(3), N(2), N(4)}

(1)(2) (3) (4)(5)

root

child

root(N(2)) = N(3)
root(N(4)) = N(5)
root(N(1)) = N(5)

𝐺 = 𝑒𝑔𝑟𝑎𝑝ℎ(𝜑)
Notation



Extracting terms from an egraph

Find one desired node per class à representative (rep)

To extract a term of a node, use the terms of reps of its children
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repr : N → N          (representative function)
repr = {N(i), N(j)}  (we describe rep functions by the set of representatives)

ntt(node,repr)      (node-to-term, we omit repr if obvious)

Notation



Extracting terms from an egraph
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Example repr = {N(4), N(5)}

ntt(N(1), repr) = 𝑔(6)

ntt(N(5), repr) = 𝑥
ntt(N(3), repr) = 𝑓(𝑥)f
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repr(N(2)) = N(4)
repr(N(3)) = N(4)
repr(N(4)) = N(4)
repr(N(1)) = N(5)
repr(N(5)) = N(5)



Extracting formulas from an egraph

Given a rep function repr, produce for each node:
       ntt(repr(n)) ≈ ntt(n)
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G.to_formula(repr)        (extract a formula from an egraph)
Notation

(	⦁	)∃  existential closure
Guarantee : G = 𝑒𝑔𝑟𝑎𝑝ℎ(𝜑),  𝜑∃	≡	(G.to_formula(repr))∃	



Extracting formulas from an egraph
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repr = {N(4), N(5)}

G.to_formula(repr) = 
6 ≈ 𝑓 𝑥 ∧ 6 ≈ 𝑦 ∧ 𝑥 ≈ 𝑔 6

                                  class(N(4))               class(N(5))

G = 𝑒𝑔𝑟𝑎𝑝ℎ(𝑦 ≈ 𝑓 𝑥 ∧ 𝑥 ≈ 𝑔 𝑦 ∧ 𝑓 𝑥 ≈ 6)



Extracting for qelim
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repr = {N(4), N(1)}

G.to_formula(repr) = 
6 ≈ 𝑓 𝑔 6 ∧ 6 ≈ 𝑦 ∧ 𝑔 𝑓(6 ) ≈ 𝑥

                               class(N(4))                        class(N(5))

G = 𝑒𝑔𝑟𝑎𝑝ℎ(𝑦 ≈ 𝑓 𝑥 ∧ 𝑥 ≈ 𝑔 𝑦 ∧ 𝑓 𝑥 ≈ 6)

bigger formula but more suitable for qelim!
just drop (6 ≈ 𝑦 ∧ 𝑔 𝑓(6 ) ≈ 𝑥)



QEL – Quantifier reduction using egraphs

Problem that we are trying to solve:

Given a quantifier free formula 𝐴 𝒗 , 
        find 𝐵 𝒖  with 𝒖 ⊆ 𝒗 and 𝐵 𝒖 ∃≡ 𝐴 𝒗 ∃

        if 𝒖 is empty, we have qelim
           

Using transitivity & congruence axioms
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QEL – Quantifier reduction using egraphs

14

2. Find (ground) definitions 3. [Opt] Refine

4. Find a core 5. Output core

1. Build egraph
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6	 ≈ 𝑓 𝑔 6
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QEL – Quantifier reduction using egraphs
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2. Find (ground) definitions 3. [Opt] Refine

4. Find a core 5. Output core

1. Build egraph
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Constructively ground
A class is ground if it contains a node that is constructively ground 
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⊤ > 

3 𝑧 𝑟𝑒𝑎𝑑 

𝑎 𝑥 𝑦 

+ 

𝑘 1 

𝑟𝑒𝑎𝑑 

𝛾 𝑥, 𝑦, 𝑧 	≜ 𝑧	 ≈ 𝑟𝑒𝑎𝑑 𝑎, 𝑥 ∧ 𝑘 + 1	 ≈ 𝑟𝑒𝑎𝑑 𝑎, 𝑦 ∧ 𝑥 ≈ 𝑦 ∧ 3 > 𝑧	



⊤ > 

3 𝑧 𝑟𝑒𝑎𝑑 

𝑎 𝑥 𝑦 

+ 

𝑘 1 

Constructively ground
A class is ground if it contains a node that is constructively ground 
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𝑟𝑒𝑎𝑑 

𝛾 𝑥, 𝑦, 𝑧 	≜ 𝑧	 ≈ 𝑟𝑒𝑎𝑑 𝑎, 𝑥 ∧ 𝑘 + 1	 ≈ 𝑟𝑒𝑎𝑑 𝑎, 𝑦 ∧ 𝑥 ≈ 𝑦 ∧ 3 > 𝑧	



Constructively ground
A class is ground if it contains a node that is constructively ground 
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⊤ > 

3 𝑧 𝑟𝑒𝑎𝑑 

𝑎 𝑥 𝑦 

+ 

𝑘 1 

𝑟𝑒𝑎𝑑 

𝛾 𝑥, 𝑦, 𝑧 	≜ 𝑧	 ≈ 𝑟𝑒𝑎𝑑 𝑎, 𝑥 ∧ 𝑘 + 1	 ≈ 𝑟𝑒𝑎𝑑 𝑎, 𝑦 ∧ 𝑥 ≈ 𝑦 ∧ 3 > 𝑧	



Find repr maximizing constr. ground
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Find repr maximizing constr. ground
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Let’s choose constr. ground nodes as 
representatives! 



Wait…
can we extract using 
any representative 
function?
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Not all representative functions 
guarantee that ntt-extraction 
terminates



Inadmissible representative function
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Example repr = {N(1), N(3)}

ntt(N(1)) = ntt(g(ntt(N(3))) = ntt(g(f(ntt(N(1))) … 
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Admissible representative functions
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A representative function repr is admissible iff:
•  unique rep per class
•  repr defines the same classes as root
•  a node is not a representative of any of its repr-descendants

Intuitively, the term of a node is not necessary to produce its own 
term

Formally, the graph 𝐺EFGE = 𝑁, 𝐸EFGE  with 
                 𝐸EFGE 	≜ { 𝑛, 𝑟𝑒𝑝𝑟 𝑐 	𝑐 ∈ 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 𝑛 , 𝑛 ∈ 𝑁} is acyclic



Admissible representative functions
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Example repr = {N(1), N(3)}

ntt(N(1)) = ntt(g(ntt(N(3))) = ntt(g(f(ntt(N(1))) … 

Not 
admissible!
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Grepr



Admissible representative functions
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repr = {N(4), N(5)}

Admissibility is a necessary and sufficient condition 
for termination of to_formula

Choosing reps. based on (smaller) AST size 
guarantees admissibility…
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Admissible!



Find repr maximizing constr. ground
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repr = {N(4), N(1)}
Admissible!



Find repr maximizing constr. ground
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repr = {N(4), N(1)}

Since terms of reps are used in ntt, variables with ground rep 
appear only once using  to_formula:

G.to_formula(repr) = 6 ≈ 𝑓 𝑔 6 ∧ 6 ≈ 𝑦 ∧ 𝑔 𝑓(6 ) ≈ 𝑥
Easy elimination!

Why do constr. ground reps help?



QEL guarantees
A variable is eliminated if:
• It has a ground definition
• Its node is not reachable in 𝐺EFGE by any of 

the nodes in the core*

If all variables meet the conditions, we find a qelim

QEL is stronger than variable substitution
    ∃𝑥 ⋅ 𝑥 ≈ 𝑔 𝑓 𝑥 ∧ 𝑓 𝑥 ≈ 6 QEL finds 6 ≈ 𝑔 𝑓 6  
    For ∃𝑥, 𝑦 ⋅ 𝑓 𝑥 ≈ 𝑓 𝑦 ∧ 𝑥 ≈ 𝑦,	QEL produces ⊤, which is a qelim
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𝜑’ ≜ 6	 ≈ 𝑓 𝑔 6

𝜑 𝑥, 𝑦 ≜ 𝑦 ≈ 𝑓 𝑥 ∧ 𝑥 ≈ 𝑔 𝑦 ∧ 𝑓 𝑥 ≈ 6

qelim!



Model-Based Projection
Under-approximation if variables were not eliminated
Example: ∃𝑥 ⋅ 𝑓 𝑥 > 5 : a projection is 𝑓 0 > 5

Presented as rewrite rules
Guarantees:
      rewriting terminates
      result is an under-approximation
      output contains no variables

Rules are defined for different theories separately
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no approx.

approximate (split) 
based on a model



Implementing MBP using egraphs
Repeat until variables eliminated (out of the core*):
(1) Apply equivalence-preserving MBP rules until saturation
(2) Remove nodes from core based on rules
(3) If there are variables, apply model-splitting MBP rules

Very easy to combine theories, just as for SMT solving!
We implemented for ADTs and Arrays

Full elimination is guaranteed (under-approx.)
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Only to non constr. 
ground nodes in the 
core

Apply only to not constr. 
ground nodes in the core

Update constr. groundness



Implementation & evaluation – QSAT

Category Count
Z3EG Z3 YICESQS

SAT UNSAT SAT UNSAT SAT UNSAT

LIA 416 150 266 150 266 107 102

LRA 2 419 795 1 589 793 1 595 808 1610
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Category Count
Z3EG Z3

SAT UNSAT SAT UNSAT

LIA-ADT 416 150 266 150 56

LRA-ADT 2 419 757 1 415 793 964

Solving formulas alternating exists and forall quantifiers



Implementation & evaluation – Spacer
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CHC solving over ADTs, LIA and Arrays

Category Count
Z3EG Z3 ELDARICA

SAT UNSAT SAT UNSAT SAT UNSAT

Solidity 3 468 2 324 1 133 2 314 1 114 2 329 1 134

à abi 127 19 108 19 88 19 108

LIA-lin-Arrays 488 214 72 212 75 147 68



Conclusion
Characterized all possible extractions from egraphs via admissible 
representative functions
Presented QEL, an algorithm for quantifier reduction that is complete relative to 
ground definitions entailed by formulas

Use theory rewrites to under-approximate formulas 
(Model-Based Projection) when QEL was not complete
     Implemented MBP for ADTs and Arrays

Implemented and evaluated within Z3: We used it to improve QSAT and the 
Spacer CHC solver
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Refining repr
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𝜓(𝑥, 𝑦) 	≜ 𝑥	 ≈ 𝑔 𝑓 𝑥 ∧ 𝑦	 ≈ ℎ 𝑓 𝑦 ∧ 𝑓 𝑥 ≈ 𝑓(𝑦)

refine

repr = {N(3), N(5), N(6)} repr = {N(1), N(5), N(6)}

try refine
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repr = {N(1), N(5), N(4)}
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(5)

(6)

Nothing constr. 
ground

Not admissible!
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Bonus: Formulas with Minimal Variables 
Appearing?

𝜑 𝑥, 𝑦, 𝑧 	≜ 𝑥 ≈ 𝑓 𝑧 ∧ 𝑦 ≈ 𝑔 𝑧 ∧ 𝑧 ≈ ℎ(𝑥, 𝑦)

Possible outputs, depending on refinement order of repr:
𝜑> 𝑧 	≜ 𝑧 ≈ ℎ(𝑓(𝑧), 𝑔(𝑧))

𝜑? 𝑥, 𝑦 	≜ 𝑥 ≈ 𝑓 ℎ(𝑥, 𝑦) ∧ 𝑦 ≈ 𝑔 ℎ(𝑥, 𝑦)

Open question: hard due to sharing?
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Find repr maximizing constr. ground
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Find repr maximizing constr. ground
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x todo = [N(4)]
repr = {}



Find repr maximizing constr. ground

40

f

(1)

(3) (4)

(5)

(2)

g

6y

x todo = []
repr = {N(4)}



Find repr maximizing constr. ground
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Find repr maximizing constr. ground
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QEL examples

43

𝛾 𝑥, 𝑦, 𝑧 	≜ 𝑧	 ≈ 𝑟𝑒𝑎𝑑 𝑎, 𝑥 ∧ 𝑘 + 1	 ≈ 𝑟𝑒𝑎𝑑 𝑎, 𝑦 ∧ 𝑥 ≈ 𝑦 ∧ 3 > 𝑧	

𝛾’ 𝑥 	≜ 𝑘 + 1	 ≈ 𝑟𝑒𝑎𝑑 𝑎, 𝑥 ∧ 3 > 𝑘 + 1	

⊤ > 

3 𝑧 𝑟𝑒𝑎𝑑 

𝑎 𝑥 𝑦 

+ 

𝑘 1 

𝑟𝑒𝑎𝑑 

𝜓(𝑥, 𝑦) 	≜ 𝑥	 ≈ 𝑔 𝑓 𝑥 ∧ 𝑦	 ≈ ℎ 𝑓 𝑦 ∧ 𝑓 𝑥 ≈ 𝑓(𝑦)

𝜓’ 𝑦 ≜ 𝑦	 ≈ ℎ 𝑓 𝑦 ∧ 𝑓(𝑦) ≈ 𝑓(𝑔 𝑓 𝑦 )
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𝜑’ ≜ 6	 ≈ 𝑓 𝑔 6

𝜑 𝑥, 𝑦 ≜ 𝑦 ≈ 𝑓 𝑥 ∧ 𝑥 ≈ 𝑔 𝑦 ∧ 𝑓 𝑥 ≈ 6

qelim!


