Fast Approximations of
Quantifier Elimination

Isabel Garcia-Contreras* Hari Govind VK* FE @i
S Sharon Shoham Arie Gurfinkel 7 e

@CAV 2023

Q000 T e oo

TELAVIV NOD'0D1IIN N .
UNIVERSITY 2AN'TN equal contribution

What is existential quantifier
elimination (qelim)?

Given a formula ¢ 2 3v - A(v), find a quantifier-free y that is equivalent to ¢.

dx

dx

da -

dx

original

- f(x) >5Ax=y
"X >5ANy>x

ali] = wAaljl=xAalk] = yAa|l] =z

f(x)>5

gelim

f)>5
y>6

(ijow=x)A(irk->w=y)A
(ixl->w=2)A(rk-ox=y)A
Grloy=2)A(i=j>y=2)

Does not exist

Why gelim?
Widely used in

Playing with Quantified Satisfaction

Nikolaj Bjgrner' and Mikol4s Janota?

! Microsoft Research, Redmond, USA
2 Microsoft Research, Cambridge, UK

Abstract

We develop an algorithm for satisfiability of quantified formulas. The algorithm is based on recent progress
in solving Quantified Boolean Formulas, but it generalizes beyond propositional logic to theories, such as linear 1
arithmetic over integers (Presburger arithmetic), linear arithmetic over reals, algebraic data-types and arrays.

Compared with previous algorithms for satisfiability of quantified arithmetical formulas our new implementation

outperforms previous implementations in Z3 by a significant margin.

isfiable.

tasks

Solving Exists/Forall Problems With Yices
Extended Abstract

Computer Science Laboratory

Bruno.Dutertre@sri.com

Yices now includes a solver for Exists/Forall problem. We describe the problem, a
general solving algorithm, and a key model-based generalization procedure. We explain
and survey a few applications.

The traditional SMT problem is to determine whether a quantifier-free formula ®(z) is sat-
Some solvers can also handle first-order formulas with arbitrary quantifiers. We

are concerned with a simpler case, namely, formulas of the form Vy.®(x,y), where ®(z,y)
is quantifier-free. Tmplicitly, the variables = are existentially quantified: we are checking the

Complete Functional Synthesis

Viktor Kuncak ~ Mikaél Mayer Ruzica Piskac Philippe Suter *

School of Computer and Communication Sciences (I&C) - Swiss Federal Institute of Technology (EPFL), Switzerland
firstname.lastname@epfl.ch

Abstract

Synthesis of program fragments from specifications can make
programs easier to write and easier to reason about. To inte-
grate synthesis into programming languages, synthesis algorithms
should behave in a predictable way—they should succeed for a

requires detailed specifications, which for large programs become
difficult to write.

‘We therefore expect that practical applications of synthesis lie in
its integration into the compilers of general-purpose programming
languages. To make this integration feasible, we aim to identify

SMT-Based Model Checking
for Recursive Programs

Anvesh Komuravelli, Arie Gurfinkel, and Sagar Chaki

Carnegie Mellon University, Pittsburgh, PA, USA

Abstract. We present an SMT-based symbolic model checking algo-
rithm for safety verification of recursive programs. The algorithm is
modular and analyzes procedures individually. Unlike other SMT-based
approaches, it maintains both over- and under-approximations of pro-
cedure summaries. Under-approximations are used to analyze procedure
calls without inlining. Over-approximations are used to block infeasi-

Dealing with gelim

Expensive in general
propositional: PSPACE-complete

LIA: O(m?")

... but cheap in some cases

Existing solvers try their luck with a light preprocess Btw, they should replace
based on the variable substitution rule: the math in this image by

: : lim problems...
Jx-x~tA@ =[x —t] (*)providedtisx-free oo

Dealing with gqelim by substitution

dx-x =t A = @[x — t]

Let’s try: 3x,y - A(x,y) with
A, y) 2y = [(x) Ax = gly) ANf(x) =6

Trial #1: A[y — f(0)] = x ~ g(f () A f(x) =~ 6 — Nomoredefs

Trial #2: Al — 9] v = [(g()) Af(g(y)) = 6 Nomoredets

Trial #3: Ay - 6] [X — g(6)] 6 ~ f(g(6)) — qgelim!
N\

by transitivity Relies on definitions syntactically existing in the formula

Depends on substitution order
Difficult to deal with circular equalities

Our aim: fast quantifier reduction

Quickly try to remove variables (reduction of variables)
Consider all definitions

What are egraphs?

() 2y =)A= gy)Af(x) =6
2) G) (4)

root(N(2))
root(N(4))
root(N(1))

class(N(1)) =
class(N(2)) =

()}
(2), N(4)}

el

{G = egraph(o)

7

Extracting terms from an egraph

Find one desired node per class = representative (rep)

To extract a term of a node, use the terms of reps of its children
-

orton R
repr: N — N (representative function)

repr = {N(i), N(j)} (we describe rep functions by the set of representatives)

ntt(node,repr) (node-to-term, we omit repr if obvious)
\ %

Extracting terms from an egraph

Example repr = {N(4), N(5)} {

ntt(N(5), repr) = x

ntt(N(3), repr) = f(x)
ntt(N(1), repr) = g(6)

Extracting formulas from an egraph @

Given a rep function repr, produce for each node:
ntt(repr(n)) = ntt(n)

orion S

p
G.to_formula(repr) (extract a formula from an egraph)

(e)a existential closure

Guarantee : G = egraph(¢), ¢~ = (G.to_formula(repr))’
_ J

10

Extracting formulas from an egraph

G=egraph(y = f(x)Ax = g(y) A f(x) = 6)
(1)

repr ={N(4), N(5)}

2) (3) (4)

I G.to_formula(repr) =

10:0.0 o A6~y Ax =~ 6(®

' l Y)\ Y J

N > class(N(4) class(N(5))
N O.

11

Extracting for gelim

G =egraph(y = f(x) Ax = g(y) A f(x) = 6)

(1)

©

I2)
|

\
\

(3)

repr = {N(4), N(1)}

G.to_formula(repr) =

6~ f(g(6))A6~yAg(f(6)) ~x

class(N(4)) class(N(5))

bigger formula but more suitable for gelim!

justdrop (6 = y A g(f(6)) = x)

12

QEL - Quantifier reduction using egraphs

Problem that we are trying to solve: @

Given a quantifier free formula A(v),
find B(u) with u € v and B(u) = A(v)’
If u Is empty, we have gelim

Using transitivity & congruence axioms

13

QEL - Quantifier reduction using egraphs

1. Build egraph 2. Find (ground) definitions 3. [Opt] Refine

4. Find a core 5. Output core

/@ """ : 6 ~ f(g(6))

14

QEL - Quantifier reduction using egraphs

1. Build egraph 2. Find (ground) definitions 3. [Opt] Refine

4. Find a core 5. Output core

/@ """ : 6 ~ f(g(6))

15

Constructively ground

A class is ground if it contains a node that is

v(x,v,z) £z =read(a,x) ANk+1 =read(a,y) AN x=yA3>z

ground

16

Constructively ground

A class is ground if it contains a node that is

v(x,v,z) £z =read(a,x) ANk+1 =read(a,y) AN x=yA3>z

ground

17

Constructively ground

A class is ground if it contains a node that is

v(x,v,z) £z =read(a,x) ANk+1 =read(a,y) AN x=yA3>z

ground

18

Find repr maximizing constr. ground

(1)

(9
(2 (3 (4
(0,00
\

(

5)

\
N\
N
~

19

Find repr maximizing constr. ground

Let’s choose constr. ground nodes as
representatives!

20

Wait...
can we extract using

any representative
function?

Not all representative functions
guarantee that ntt-extraction
terminates

Inadmissible representative function

Example repr = {N(1), N(3)}

ntt(N(1)) = ntt(g(ntt(N(3))) = ntt(g(f(ntt(N(1))) ...

22

Admissible representative functions @,

A representative function repr is admissible iff:

* unique rep per class
« repr defines the same classes as root
« anode is not a representative of any of its repr-descendants

Intuitively, the term of a node is not necessary to produce its own
term

Formally, the graph G,.,, = (N, E.,,) with
Erepr 2 {(n,repr(c)| c € children(n),n € N} is acyclic

23

Admissible representative functions

Example repr = {N(1), N(3)}

ntt(N(1)) = ntt(g(ntt(N(3))) = ntt(g(f(ntt(N(1))) ...

admissible!

24

Admissible representative functions

repr = {N(4), N(5)} Admissible!

Admissibility is a necessary and sufficient condition
for termination of to_formula

Choosing reps. based on (smaller) AST size
guarantees admissibility...

25

Find repr maximizing constr. ground

repr = {N(4), N(1)}

26

Find repr maximizing constr. ground

repr = {N(4), N(1)}

Why do constr. ground reps help?
-~

Since terms of reps are used in ntt, variables with ground rep
appear only once using to_formula:

G.to_formula(repr) =6 ~ f(g(6)) A6 ~ v A g(f(6)) = x
Easy elimination!

27

NG

QEL guarantees

px,)2y=f)Ax=gy)Af(x)=6

A variable is eliminated if: _.-, "-V
e It has a ground definition g

* Its node is not reachable in G,.,, by any of <,

. *
the nodes In the core o =6 ~f(g(6) @

If all variables meet the conditions, we find a gelim

QEL is stronger than variable substitution
Ix - x =~ g(f(x)) A f(x) ~ 6 QEL finds 6 ~ g(f(6))
For3ax,y- f(x) = f(y) Ax = y,QEL produces T, which isa gelim
28

Model-Based Projection

Under-approximation if variables were not eliminated
Example: 3x - f(x) > 5:a projectionis f(0) > 5

go[wr(tla j: U) =7 t2]

ELIMWREQ ——
ELIMWRRD plrd(wr(t,i,v), 7)) o (J €ingltr =pta]) v .
Presented as (=3 Neh]) v (i # Aelrd(t,) (6 ¢ ineltr =i t2 Av = rd(t2,3)])
. =t [t =i 1] [t1 =; t2] 2 is a write term
G uara nti.es.g PARTIALEQ ;tl - ;2] t:’s have array sort TRIVEQ ‘pcp[T] SYMM Z[t; - tf] f)ut A n:)tt
rewritin
result is an
outp ut contains
no ap prOX. MBPLEFT Pl Y o] ME ¢,
o]
MBPRIGHT 50[1/11 v 1[)2]90[1!)]M ': ke
approximate (split) ’
based on a model Mapvac PPV 2l MWED M I 1,92

Rules are defined for different theories separately

29

Implementing MBP using egraphs

Repeat until variables eliminated (out of the core*):

Apply only to not constr.

(2) Remove nodes from core based on rules
ground nodes in the core

(3) If there are variables, apply model-splitting MBP rules ———

(1) Apply equivalence-preserving MBP rules until saturation \

Update constr. groundness

Very easy to combine theories, just as for SMT solving!
We implemented for ADTs and Arrays

Full elimination is guaranteed (under-approx.)

30

Implementation & evaluation - QSAT

Solving formulas and quantifiers

/3EG /3 YicesQS
SAT UNSAT SAT UNSAT SAT UNSAT
LIA 416 150 266 150 266 107 102
LRA 2419 795 1589 793 1595 808 1610

Category Count

Playing with Quantified Satisfaction

Nikolaj Bjgrner' and Mikol43 Janota®

! Microsoft Research, Redmond, USA
2 Microsoft Research, Cambridge, UK

Abstract

‘We develop an algorithm for satisfiability of quantified formulas. The algorithm is based on recent progress
in solving Quantified Boolean Formulas, but it generalizes beyond propositional logic to theories, such as linear
arithmetic over integers (Presburger arithmetic), linear arithmetic over reals, algebraic data-types and arrays.
Compared with previous algorithms for satisfiability of quantified arithmetical formulas our new implementation
outperforms previous impl ions in Z3 by a signifi margin.

Category

Z3EG /3

SAT UNSAT SAT UNSAT

Count

LIA-ADT
LRA-ADT

416 150 266 150 56
2419 757 1415 793 964

31

Implementation & evaluation - Spacer

CHC solving over ADTs, LIA and Arrays

/3EG /3 ELDARICA
Category Count
SAT UNSAT SAT UNSAT SAT UNSAT

Solidity 3468 2324 1133 2314 1114 2329 1134
> abi 127 19 108 19 88 19 108
LIA-lin-Arrays 488 214 72 212 75 147 68

SolCMC: Solidity Compiler’s Model
Checker

CHC

Leonardo Alt*(™) Martin Blicha23,
Antti E. J. Hyvérinen?, and Natasha Sharygina?

A Al
i Evaluation
- 1 . * * K
. thereu oundation, Berlin, Ger y
COMP 2 Universita della Svizzera italiana, Lugano, Switzerland
m. in.blicha,antti.hyvaerinen,natasha.sh ina}@usi.ch

inen, .
3 Charles University, Prague, Czech Republic

Conclusion

Characterized all possible extractions from egraphs via admissible N
representative functions
Presented QEL, an algorithm for quantifier reduction that is
entailed by formulas
Use to under-approximate formulas g st sppromated quantiterEimination #6820
() When QEL WaS not COmplete agurfinkelwan(s(omerge34comm'\tsinlc Z3Prover:naster from agurfinkeligel (O
Implemented MBP for ADTs and Arrays @ e e

Fast Approximations of
Quantifier Elimination

Isabel Garcia-Contreras Hari Govind V K
Sharon Shoham Arie Gurfmkel

Yes, | am the
representative!

ek @CAV 2023

Q000 B WATERLGO

TELAVIV NO'01]1IN
UNIVERSITY 2INTN

Refining repr

Nothing constr.
Y(x,y) 2x 2 g(f))Ay ~h(FO) A f(x) = f(y) ground

repr = {N(3), N(5), N(6)} repr ={N(1), N(5), N(6)} repr ={N(1), N(5), N(4)}

35

3 A Quantified Satisfiability Game

Algorithm 1: QSAT
17« 1;
2 M + null;

3 while True do
4 if F; A strategy(M, j) is unsat then

5 if j = I then

6 return G is false

7 if j = 2 then

8 return G is true

9 C < Core(F}, strategy(M, j));
10 J < Mbp(M, tail(j),C);

11 j < index of max variable in J U {1, 2} of same parity as j;
12 F; < F; A—J;

13 M < null;

14 else

15 M < the current model;

16 77+ 1;

Playing with Quantified Satisfaction

Nikolaj Bjgrner! and Mikol4s Janota?®

1 Microsoft Research, Redmond, USA
2 Microsoft Research, Cambridge, UK

Abstract

We develop an algorithm for satisfiability of quantified formulas. The algorithm is based on recent progress
in solving Quantified Boolean Formulas, but it generalizes beyond propositional logic to theories, such as linear
arithmetic over integers (Presburger arithmetic), linear arithmetic over reals, algebraic data-types and arrays.
Compared with previous algorithms for satisfiability of quantified arithmetical formulas our new implementation
outperforms previous implementations in Z3 by a significant margin.

36

Bonus: Formulas with Minimal Variables
Appearing?

px,y,z) 2x=f(2) ANy = g(z) ANz = h(x,y)

Possible outputs, depending on of repr:

01(z) £z =h(f(2),9(2))
p2(x,y) 2x = f(h(x,y)) Ay = g(h(x,y))

Open question: hard due to sharing?

37

Find repr maximizing constr. ground

egraph :: find defs(v)

1:

(1) >
,
OEE (4
\

\

\\ (5)

for n € N do repr(n) := %

todo := {leaf(n) | n € N A ground(n)}
repr := process(repr, todo)

todo := {leaf(n) | n € N}

repr := process(repr, todo)

ret repr

egraph :: process(repr, todo)

7: while todo # 0 do

8: m := todo.pop()

9: if repr(n) # % then continue

10: for n' € class(n) do repr(n') :=n
11: for n’ € class(n) do

12: for p € parents(n’) do

13: if Vc € children(p) - repr(c) # % then
14: todo.push(p)
15: ret repr

38

Find repr maximizing constr. ground

egraph :: find defs(v) egraph :: process(repr, todo)
1: for n € N do repr(n) := % 7: while todo # 0 do
(1) wmmn) 2: todo := {leaf(n) | n € N A ground(n)} 8 M= todo.pop() _
3: repr := process(repr, todo) 9: if repr(n) # % then continue
4: todo := {leaf(n) | n € N} 10: for n' € class(n) do repr(n') :=n
5: Tepr := process(repr, todo) 11: for n’ € class(n) do
/ 6: ret repr 12: for p € parents(n’) do
I(2 (3 (4 13: if Vc € children(p) - repr(c) # % then
! 14: todo.push(p)
\ 15: ret repr
\
\
S (5)
= todo = [N(4)]

repr = {}

39

Find repr maximizing constr. ground

egraph :: find defs(v) egraph :: process(repr, todo)
1: for n € N do repr(n) := % 7: while todo # 0 do
(1) 2: todo := {leaf(n) | n € N A ground(n)} 8 mi= todo.pop() _
3: repr := process(repr, todo) 9: if repr(n) # % then continue
4: todo := {leaf(n) | n € N} mem)10: for n’ € class(n) do repr(n') :==n
e 5: Tepr := process(repr, todo) 11: for n’ € class(n) do
/ 6: ret repr 12: for p € parents(n’) do
I(2 (3 (4 13: if Vc € children(p) - repr(c) # % then
L 14: todo.push(p)
\ 15: ret repr
\
N (5)

~
~ todo =]

repr = {N(4)}

40

Find repr maximizing constr. ground

egraph :: find defs(v) egraph :: process(repr, todo)
1: for n € N do repr(n) := % 7: while todo # 0 do
(1) 2: todo := {leaf(n) | n € N A ground(n)} 8 mi= todo.pop() _
3: repr := process(repr, todo) 9: if repr(n) # % then continue
4: todo := {leaf(n) | n € N} 10: for n' € class(n) do repr(n') :=n
e 5: Tepr := process(repr, todo) 11: for n’ € class(n) do
/ 6: ret repr 12: for p € parents(n’) do
I(2 (3 (4 13: if Vc € children(p) - repr(c) # % then
L ——) 14: todo.push(p)
\ 15: ret repr
\
N (5)
N

~

todo = [N(1)]
repr = {N(4)}

41

Find repr maximizing constr. ground

egraph :: find defs(v) egraph :: process(repr, todo)
1: for n € N do repr(n) := % 7: while todo # 0 do
(1) 2: todo := {leaf(n) | n € N A ground(n)} 8 mi= todo.pop() _
3: repr := process(repr, todo) memms) 9: if repr(n) # Y then continue
4: todo := {leaf(n) | n € N} 10: for n' € class(n) do repr(n') :=n
e 5: Tepr := process(repr, todo) 11: for n’ € class(n) do
/ 6: ret repr 12: for p € parents(n’) do
I(2 (3 (4 13: if Vc € children(p) - repr(c) # % then
L 14: todo.push(p)
\ 15: ret repr
\
N (5)

~
~ todo =]

repr = {N(4), N(1)}

42

QEL examples

YY) 2x = g(f))Ay =h(f) A f(x) = fF)

Y 2y =h(FM)AFO) = Fa(FO)))

px,) 2y=f)Ax=gy)Af(x)=6

o 26 ~f(g(6))

y(x,y,z) 2z =read(a,x) Nk+1 =read(a,y) Ax = yA3 >z

V() 2k+1 =read(a,x) A\3>k+1

43

