
Multivariant Assertion-based Guidance in

Abstract Interpretation

Isabel Garcia-Contreras Jose F. Morales Manuel V. Hermenegildo

Frankfurt am Main, LOPSTR 2018, September 5, 2018

IMDEA Software Institute, and

Technical University of Madrid

Abstract interpretation

Simulates the execution of programs using abstract domains.

It guarantees:

• Analysis termination, provided that the domain meets some conditions.

• Results are safe approximations of the concrete semantics.

Accurate and efficient approximations have been achieved with:

• clever abstract domains,

• widening and narrowing techniques,

• sophisticated fixpoint algorithms.

Multivariant Assertion-based Guidance in Abstract Interpretation 1

Abstract interpretation

Simulates the execution of programs using abstract domains.

It guarantees:

• Analysis termination, provided that the domain meets some conditions.

• Results are safe approximations of the concrete semantics.

Accurate and efficient approximations have been achieved with:

• clever abstract domains,

• widening and narrowing techniques,

• sophisticated fixpoint algorithms.

Multivariant Assertion-based Guidance in Abstract Interpretation 1

Providing User-guidance to the Analysis

Two problems that motivate allowing the user to guide the analyzer:

1. Automatic approximations may lead to imprecise results:

• Desired optimizations cannot be applied.

• Assertions cannot be verified (“false alarms”).

→ Allow the user to provide the analyzer known properties by making

optional annotations to regain precision.

2. Analysis may require excessive resources (time or space):

→ Allow the user to provide the analyzer with suggestions to speed up

fixpoint computation.

Multivariant Assertion-based Guidance in Abstract Interpretation 2

Providing User-guidance to the Analysis

Two problems that motivate allowing the user to guide the analyzer:

1. Automatic approximations may lead to imprecise results:

• Desired optimizations cannot be applied.

• Assertions cannot be verified (“false alarms”).

→ Allow the user to provide the analyzer known properties by making

optional annotations to regain precision.

2. Analysis may require excessive resources (time or space):

→ Allow the user to provide the analyzer with suggestions to speed up

fixpoint computation.

Multivariant Assertion-based Guidance in Abstract Interpretation 2

Previous work

We focus on the techniques that provide the programmer to optionally annotate

program parts to guide invariants inference:

Astreè [ESOP ’05] uses at program point:

• asserts with properties that have to be verified.

• known facts used to refine abstract state.

CiaoPP [ESOP ’96] uses assertions that can be qualified with a status:

• check: meaning that it needs to be verified.

• trust: representing knowledge that the user guarantees to be true (beliefs).

There is no precise description of how annotations interact with fixpoint computation.

Our goals:

• clarify the influence of annotations on the analysis result.

• propose different strategies to apply such annotations during analysis.

• provide precise conditions for detecting when annotations may lead to erroneous

analysis results.

Multivariant Assertion-based Guidance in Abstract Interpretation 3

Previous work

We focus on the techniques that provide the programmer to optionally annotate

program parts to guide invariants inference:

Astreè [ESOP ’05] uses at program point:

• asserts with properties that have to be verified.

• known facts used to refine abstract state.

CiaoPP [ESOP ’96] uses assertions that can be qualified with a status:

• check: meaning that it needs to be verified.

• trust: representing knowledge that the user guarantees to be true (beliefs).

There is no precise description of how annotations interact with fixpoint computation.

Our goals:

• clarify the influence of annotations on the analysis result.

• propose different strategies to apply such annotations during analysis.

• provide precise conditions for detecting when annotations may lead to erroneous

analysis results.

Multivariant Assertion-based Guidance in Abstract Interpretation 3

The Ciao Assertion Language

Assertions express abstractions of the behavior of programs.

pred assertions (subset)

:- [Status] pred Head [: Pre] [=> Post].

• Head : predicate that the assertion applies to.

• Pre: properties about how the predicate is used.

• Post: properties that hold if Pre holds and the predicate succeeds.

• Status qualifies the meaning of assertions:

• check (default): program specifications.

• trust: assertions whose validity is guaranteed by the programmer.

�
1 :- trust pred fact(N, R) => (int(N), R > 0).

2 :- trust pred fact(N, R) : N > 1 => even(R).� �

Multivariant Assertion-based Guidance in Abstract Interpretation 4

The Ciao Assertion Language

Assertions express abstractions of the behavior of programs.

pred assertions (subset)

:- [Status] pred Head [: Pre] [=> Post].

• Head : predicate that the assertion applies to.

• Pre: properties about how the predicate is used.

• Post: properties that hold if Pre holds and the predicate succeeds.

• Status qualifies the meaning of assertions:

• check (default): program specifications.

• trust: assertions whose validity is guaranteed by the programmer.�
1 :- trust pred fact(N, R) => (int(N), R > 0).

2 :- trust pred fact(N, R) : N > 1 => even(R).� �
Multivariant Assertion-based Guidance in Abstract Interpretation 4

Using Trust Assertions

Trust assertions may be used to:

• Regain precision during analysis.

• Speed up computation of analysis.

• Define abstract usage or specifications of libraries or dynamic predicates.

• (Re)define the language semantics for abstract domains (transfer funct.).�
1 :- trust pred ’*’(A, B, C) : (int(A), int(B)) => int(C).

2 :- trust pred ’*’(A, B, C) : (flt(A), int(B)) => flt(C).

3 :- trust pred ’*’(A, B, C) : (int(A), flt(B)) => flt(C).

4 :- trust pred ’*’(A, B, C) : (flt(A), flt(B)) => flt(C).� �

Multivariant Assertion-based Guidance in Abstract Interpretation 5

Using Trust Assertions

Trust assertions may be used to:

• Regain precision during analysis.�
1 % (y > 0) % Analyzing with an intervals domain (non relational)

2 x = y + 2;

3 % (x > 2, y > 0)

4 z = x - y;

5 % (int(z), x > 2, y > 0)� �
But we know x = y + 2.�

1 % (y > 0)

2 x = y + 2;

3 % (x > 2, y > 0)

4 z = x - y;

5 % (int(z), x > 2, y > 0)

6 trust(z == 2); % Because of line 2

7 % (z = 2, x > 2, y > 0)� �

Multivariant Assertion-based Guidance in Abstract Interpretation 6

Using Trust Assertions

Trust assertions may be used to:

• Regain precision during analysis.�
1 % (y > 0) % Analyzing with an intervals domain (non relational)

2 x = y + 2;

3 % (x > 2, y > 0)

4 z = x - y;

5 % (int(z), x > 2, y > 0)� �

But we know x = y + 2.�
1 % (y > 0)

2 x = y + 2;

3 % (x > 2, y > 0)

4 z = x - y;

5 % (int(z), x > 2, y > 0)

6 trust(z == 2); % Because of line 2

7 % (z = 2, x > 2, y > 0)� �

Multivariant Assertion-based Guidance in Abstract Interpretation 6

Using Trust Assertions

Trust assertions may be used to:

• Regain precision during analysis.�
1 % (y > 0) % Analyzing with an intervals domain (non relational)

2 x = y + 2;

3 % (x > 2, y > 0)

4 z = x - y;

5 % (int(z), x > 2, y > 0)� �
But we know x = y + 2.

�
1 % (y > 0)

2 x = y + 2;

3 % (x > 2, y > 0)

4 z = x - y;

5 % (int(z), x > 2, y > 0)

6 trust(z == 2); % Because of line 2

7 % (z = 2, x > 2, y > 0)� �

Multivariant Assertion-based Guidance in Abstract Interpretation 6

Using Trust Assertions

Trust assertions may be used to:

• Regain precision during analysis.�
1 % (y > 0) % Analyzing with an intervals domain (non relational)

2 x = y + 2;

3 % (x > 2, y > 0)

4 z = x - y;

5 % (int(z), x > 2, y > 0)� �
But we know x = y + 2.�

1 % (y > 0)

2 x = y + 2;

3 % (x > 2, y > 0)

4 z = x - y;

5 % (int(z), x > 2, y > 0)

6 trust(z == 2); % Because of line 2

7 % (z = 2, x > 2, y > 0)� �
Multivariant Assertion-based Guidance in Abstract Interpretation 6

Using Trust Assertions

Trust assertions may be used to:

• Regain precision during analysis.

• Speed up computation of analysis.

• Define abstract usage or specifications of libraries or dynamic predicates.

• (Re)define the language semantics for abstract domains (transfer funct.).�
1 :- trust pred ’*’(A, B, C) : (int(A), int(B)) => int(C).

2 :- trust pred ’*’(A, B, C) : (flt(A), int(B)) => flt(C).

3 :- trust pred ’*’(A, B, C) : (int(A), flt(B)) => flt(C).

4 :- trust pred ’*’(A, B, C) : (flt(A), flt(B)) => flt(C).� �

Multivariant Assertion-based Guidance in Abstract Interpretation 7

Using Trust Assertions

Trust assertions may be used to:

• Regain precision during analysis.

• Speed up computation of analysis.�
1 :- trust pred html_escape(S0, S) => (string(S0), string(S)).

2 html_escape("‘‘"||S0 , "“"||S) :- !, html_escape(S0, S).

3 html_escape("’’"||S0 , "”"||S) :- !, html_escape(S0, S).

4 html_escape("’" ||S0 , """ ||S) :- !, html_escape(S0, S).

5 html_escape(""""||S0 , "'" ||S) :- !, html_escape(S0, S).

6 html_escape([X|S0], [X | S]) :- !, character_code(X),

7 html_escape(S0, S).

8 html_escape("", "").� �

Multivariant Assertion-based Guidance in Abstract Interpretation 8

Using Trust Assertions

Trust assertions may be used to:

• Regain precision during analysis.

• Speed up computation of analysis.

• Define abstract usage or specifications of libraries or dynamic predicates.

• (Re)define the language semantics for abstract domains (transfer funct.).�
1 :- trust pred ’*’(A, B, C) : (int(A), int(B)) => int(C).

2 :- trust pred ’*’(A, B, C) : (flt(A), int(B)) => flt(C).

3 :- trust pred ’*’(A, B, C) : (int(A), flt(B)) => flt(C).

4 :- trust pred ’*’(A, B, C) : (flt(A), flt(B)) => flt(C).� �

Multivariant Assertion-based Guidance in Abstract Interpretation 9

Using Trust Assertions

Trust assertions may be used to:

• Regain precision during analysis.

• Speed up computation of analysis.

• Define abstract usage or specifications of libraries or dynamic predicates.�
1 :- module(sockets, []).

2

3 :- export(receive/2).

4 :- pred receive(S, M) : (socket(S), var(M)) => list(M, utf8).

5 :- impl_defined(receive/2).

6 % receive is written in C� �

Multivariant Assertion-based Guidance in Abstract Interpretation 10

Using Trust Assertions

Trust assertions may be used to:

• Regain precision during analysis.

• Speed up computation of analysis.

• Define abstract usage or specifications of libraries or dynamic predicates.

• (Re)define the language semantics for abstract domains (transfer funct.).

�
1 :- trust pred ’*’(A, B, C) : (int(A), int(B)) => int(C).

2 :- trust pred ’*’(A, B, C) : (flt(A), int(B)) => flt(C).

3 :- trust pred ’*’(A, B, C) : (int(A), flt(B)) => flt(C).

4 :- trust pred ’*’(A, B, C) : (flt(A), flt(B)) => flt(C).� �

Multivariant Assertion-based Guidance in Abstract Interpretation 11

Using Trust Assertions

Trust assertions may be used to:

• Regain precision during analysis.

• Speed up computation of analysis.

• Define abstract usage or specifications of libraries or dynamic predicates.

• (Re)define the language semantics for abstract domains (transfer funct.).�
1 :- trust pred ’*’(A, B, C) : (int(A), int(B)) => int(C).

2 :- trust pred ’*’(A, B, C) : (flt(A), int(B)) => flt(C).

3 :- trust pred ’*’(A, B, C) : (int(A), flt(B)) => flt(C).

4 :- trust pred ’*’(A, B, C) : (flt(A), flt(B)) => flt(C).� �

Multivariant Assertion-based Guidance in Abstract Interpretation 12

Target language - Horn Clauses

We perform abstract interpretation of Horn Clauses. The concrete semantics

is goal-dependent and based on the notion of generalized and trees:

• An and tree represents the execution of a query.

• A node is a call to a predicate with:

• Constraint state for that call.

• Constraint state if the call succeeds.

We assume that programs have already been translated to Horn Clauses.

Multivariant Assertion-based Guidance in Abstract Interpretation 13

Analysis output

For all the predicates we obtain a set of tuples 〈Goal , λc , λs〉, where:

• Goal is an atom (identifier of the predicate).

• λc is a (possible) call pattern to Goal .

• λs is the answer pattern to Goal and λc if succeeds.

Example�
1 fact(0,1).

2 fact(N,R) :- N > 0,

3 N1 is N - 1,

4 fact(N1,R1),

5 R is N * R1.� �
Analysis result:

{〈fact(N, R),>,R/+〉
For any call to fact that succeeds R is positive.

〈fact(N, F),N/−,⊥〉
If fact is called with N a negative number, it fails. }

Analysis is multivariant and context sensitive.

Accessing the analysis results:

• look up: λs = a[H, λc] iff 〈H, λc , λs〉 ∈ A,

• update: a[H, λc]← λs′ removes 〈H, λc , 〉 from A and inserts 〈H, λc , λs′〉.

Multivariant Assertion-based Guidance in Abstract Interpretation 14

Analysis output

For all the predicates we obtain a set of tuples 〈Goal , λc , λs〉, where:

• Goal is an atom (identifier of the predicate).

• λc is a (possible) call pattern to Goal .

• λs is the answer pattern to Goal and λc if succeeds.

Example�
1 fact(0,1).

2 fact(N,R) :- N > 0,

3 N1 is N - 1,

4 fact(N1,R1),

5 R is N * R1.� �

Analysis result:

{〈fact(N, R),>,R/+〉
For any call to fact that succeeds R is positive.

〈fact(N, F),N/−,⊥〉
If fact is called with N a negative number, it fails. }

Analysis is multivariant and context sensitive.

Accessing the analysis results:

• look up: λs = a[H, λc] iff 〈H, λc , λs〉 ∈ A,

• update: a[H, λc]← λs′ removes 〈H, λc , 〉 from A and inserts 〈H, λc , λs′〉.

Multivariant Assertion-based Guidance in Abstract Interpretation 14

Analysis output

For all the predicates we obtain a set of tuples 〈Goal , λc , λs〉, where:

• Goal is an atom (identifier of the predicate).

• λc is a (possible) call pattern to Goal .

• λs is the answer pattern to Goal and λc if succeeds.

Example�
1 fact(0,1).

2 fact(N,R) :- N > 0,

3 N1 is N - 1,

4 fact(N1,R1),

5 R is N * R1.� �
Analysis result:

{〈fact(N, R),>,R/+〉
For any call to fact that succeeds R is positive.

〈fact(N, F),N/−,⊥〉
If fact is called with N a negative number, it fails. }

Analysis is multivariant and context sensitive.

Accessing the analysis results:

• look up: λs = a[H, λc] iff 〈H, λc , λs〉 ∈ A,

• update: a[H, λc]← λs′ removes 〈H, λc , 〉 from A and inserts 〈H, λc , λs′〉.

Multivariant Assertion-based Guidance in Abstract Interpretation 14

Analysis output

For all the predicates we obtain a set of tuples 〈Goal , λc , λs〉, where:

• Goal is an atom (identifier of the predicate).

• λc is a (possible) call pattern to Goal .

• λs is the answer pattern to Goal and λc if succeeds.

Example�
1 fact(0,1).

2 fact(N,R) :- N > 0,

3 N1 is N - 1,

4 fact(N1,R1),

5 R is N * R1.� �
Analysis result:

{〈fact(N, R),>,R/+〉
For any call to fact that succeeds R is positive.

〈fact(N, F),N/−,⊥〉
If fact is called with N a negative number, it fails. }

Analysis is multivariant and context sensitive.

Accessing the analysis results:

• look up: λs = a[H, λc] iff 〈H, λc , λs〉 ∈ A,

• update: a[H, λc]← λs′ removes 〈H, λc , 〉 from A and inserts 〈H, λc , λs′〉.

Multivariant Assertion-based Guidance in Abstract Interpretation 14

Analysis output

For all the predicates we obtain a set of tuples 〈Goal , λc , λs〉, where:

• Goal is an atom (identifier of the predicate).

• λc is a (possible) call pattern to Goal .

• λs is the answer pattern to Goal and λc if succeeds.

Example�
1 fact(0,1).

2 fact(N,R) :- N > 0,

3 N1 is N - 1,

4 fact(N1,R1),

5 R is N * R1.� �
Analysis result:

{〈fact(N, R),>,R/+〉
For any call to fact that succeeds R is positive.

〈fact(N, F),N/−,⊥〉
If fact is called with N a negative number, it fails. }

Analysis is multivariant and context sensitive.

Accessing the analysis results:

• look up: λs = a[H, λc] iff 〈H, λc , λs〉 ∈ A,

• update: a[H, λc]← λs′ removes 〈H, λc , 〉 from A and inserts 〈H, λc , λs′〉.

Multivariant Assertion-based Guidance in Abstract Interpretation 14

Intuition of the fixpoint algorithm

Simplified version of PLAI [NACLP ’89] (removed optimizations and

path-sensitivity).

Analyze(Qα,P)

input global: Qα (initial abstract queries), P (program)

output global: A, analysis result

a[Li , λi]← ⊥ for all Li :λi ∈ Qα, changes ← true

while changes do

changes ← false

W = get tuples to update()

for each (G , λc , cl) ∈ W do

λt ← abs call(G , λc , cl.head)

λt ← solve body(cl.body, λt)

λs0 ← abs proceed(G , cl.head, λt)

λs′ ← abs generalize(λs0 , {a[G , λc]})•

if λs′ 6= a[G , λc] then

a[G , λc]← λs′ , changes ← true

• includes t (lub) and widening

function solve body(B, λt)

for each L ∈ B do

λc ← abs project(L, λt)

Calls = get calls to pred(L)

λc′ ← abs generalize(λc ,Calls)•

λs ← solve(L, λc′)

λt ← abs extend(L, λs , λt)

return λt

Multivariant Assertion-based Guidance in Abstract Interpretation 15

Intuition of the fixpoint algorithm

Simplified version of PLAI [NACLP ’89] (removed optimizations and

path-sensitivity).

Analyze(Qα,P)

input global: Qα (initial abstract queries), P (program)

output global: A, analysis result

a[Li , λi]← ⊥ for all Li :λi ∈ Qα, changes ← true

while changes do

changes ← false

W = get tuples to update()

for each (G , λc , cl) ∈ W do

λt ← abs call(G , λc , cl.head)

λt ← solve body(cl.body, λt)

λs0 ← abs proceed(G , cl.head, λt)

λs′ ← abs generalize(λs0 , {a[G , λc]})•

if λs′ 6= a[G , λc] then

a[G , λc]← λs′ , changes ← true

• includes t (lub) and widening

function solve body(B, λt)

for each L ∈ B do

λc ← abs project(L, λt)

Calls = get calls to pred(L)

λc′ ← abs generalize(λc ,Calls)•

λs ← solve(L, λc′)

λt ← abs extend(L, λs , λt)

return λt

Multivariant Assertion-based Guidance in Abstract Interpretation 15

Intuition of the fixpoint algorithm

Simplified version of PLAI [NACLP ’89] (removed optimizations and

path-sensitivity).

Analyze(Qα,P)

input global: Qα (initial abstract queries), P (program)

output global: A, analysis result

a[Li , λi]← ⊥ for all Li :λi ∈ Qα, changes ← true

while changes do

changes ← false

W = get tuples to update()

for each (G , λc , cl) ∈ W do

λt ← abs call(G , λc , cl.head)

λt ← solve body(cl.body, λt)

λs0 ← abs proceed(G , cl.head, λt)

λs′ ← abs generalize(λs0 , {a[G , λc]})•

if λs′ 6= a[G , λc] then

a[G , λc]← λs′ , changes ← true

• includes t (lub) and widening

function solve body(B, λt)

for each L ∈ B do

λc ← abs project(L, λt)

Calls = get calls to pred(L)

λc′ ← abs generalize(λc ,Calls)•

λs ← solve(L, λc′)

λt ← abs extend(L, λs , λt)

return λt

Multivariant Assertion-based Guidance in Abstract Interpretation 15

Intuition of the fixpoint algorithm

Simplified version of PLAI [NACLP ’89] (removed optimizations and

path-sensitivity).

Analyze(Qα,P)

input global: Qα (initial abstract queries), P (program)

output global: A, analysis result

a[Li , λi]← ⊥ for all Li :λi ∈ Qα, changes ← true

while changes do

changes ← false

W = get tuples to update()

for each (G , λc , cl) ∈ W do

λt ← abs call(G , λc , cl.head)

λt ← solve body(cl.body, λt)

λs0 ← abs proceed(G , cl.head, λt)

λs′ ← abs generalize(λs0 , {a[G , λc]})•

if λs′ 6= a[G , λc] then

a[G , λc]← λs′ , changes ← true

• includes t (lub) and widening

function solve body(B, λt)

for each L ∈ B do

λc ← abs project(L, λt)

Calls = get calls to pred(L)

λc′ ← abs generalize(λc ,Calls)•

λs ← solve(L, λc′)

λt ← abs extend(L, λs , λt)

return λt

Multivariant Assertion-based Guidance in Abstract Interpretation 15

Intuition of the fixpoint algorithm

Simplified version of PLAI [NACLP ’89] (removed optimizations and

path-sensitivity).

Analyze(Qα,P)

input global: Qα (initial abstract queries), P (program)

output global: A, analysis result

a[Li , λi]← ⊥ for all Li :λi ∈ Qα, changes ← true

while changes do

changes ← false

W = get tuples to update()

for each (G , λc , cl) ∈ W do

λt ← abs call(G , λc , cl.head)

λt ← solve body(cl.body, λt)

λs0 ← abs proceed(G , cl.head, λt)

λs′ ← abs generalize(λs0 , {a[G , λc]})•

if λs′ 6= a[G , λc] then

a[G , λc]← λs′ , changes ← true

• includes t (lub) and widening

function solve body(B, λt)

for each L ∈ B do

λc ← abs project(L, λt)

Calls = get calls to pred(L)

λc′ ← abs generalize(λc ,Calls)•

λs ← solve(L, λc′)

λt ← abs extend(L, λs , λt)

return λt

Multivariant Assertion-based Guidance in Abstract Interpretation 15

Analyzing factorial

Qα = {fact(N, R) : int(N)}�
1 fact(0,1).

2 fact(N,R) :- N > 0,

3 N1 is N - 1,

4 fact(N1, R1),

5 R is N * R1.� �
>

int

0
− +

⊥

Action λc (fact(N,R)) λt λs (fact(N,R))

init N/int,R/> - -

it 1 (l. 1) N/int,R/> - N/0,R/+

(l. 2) N/int,R/> N/+,N1/0,R1/+ N/+,R/+

store t N/int,R/> - N/int,R/+

it 2 (l. 2) N/int,R/> - N/int,R/+

Analysis:

〈fact(N,R), (N/int,R/>),⊥〉

〈fact(N,R), (N/int,R/>),⊥〉
〈fact(N,R), (N/int,R/>), (N/0,R/+)〉
〈fact(N,R), (N/int,R/>), (N/int,R/+)〉

Multivariant Assertion-based Guidance in Abstract Interpretation 16

Analyzing factorial

Qα = {fact(N, R) : int(N)}�
1 fact(0,1). % <-- analyzing

2 fact(N,R) :- N > 0,

3 N1 is N - 1,

4 fact(N1, R1),

5 R is N * R1.� �
>

int

0
− +

⊥

Action λc (fact(N,R)) λt λs (fact(N,R))

init N/int,R/> - -

it 1 (l. 1) N/int,R/> - N/0,R/+

(l. 2) N/int,R/> N/+,N1/0,R1/+ N/+,R/+

store t N/int,R/> - N/int,R/+

it 2 (l. 2) N/int,R/> - N/int,R/+

Analysis:

〈fact(N,R), (N/int,R/>),⊥〉
〈fact(N,R), (N/int,R/>), (N/0,R/+)〉

〈fact(N,R), (N/int,R/>), (N/0,R/+)〉
〈fact(N,R), (N/int,R/>), (N/int,R/+)〉

Multivariant Assertion-based Guidance in Abstract Interpretation 16

Analyzing factorial

Qα = {fact(N, R) : int(N)}�
1 fact(0,1).

2 fact(N,R) :- N > 0, % <-- analyzing

3 N1 is N - 1,

4 fact(N1, R1),

5 R is N * R1.� �
>

int

0
− +

⊥

Action λc (fact(N,R)) λt λs (fact(N,R))

init N/int,R/> - -

it 1 (l. 1) N/int,R/> - N/0,R/+

(l. 2) N/int,R/> N/+,N1/0,R1/+ N/+,R/+

store t N/int,R/> - N/int,R/+

it 2 (l. 2) N/int,R/> - N/int,R/+

Analysis:

〈fact(N,R), (N/int,R/>),⊥〉
〈fact(N,R), (N/int,R/>), (N/0,R/+)〉

〈fact(N,R), (N/int,R/>), (N/0,R/+)〉
〈fact(N,R), (N/int,R/>), (N/int,R/+)〉

Multivariant Assertion-based Guidance in Abstract Interpretation 16

Analyzing factorial

Qα = {fact(N, R) : int(N)}�
1 fact(0,1).

2 fact(N,R) :- N > 0, % <-- analyzing

3 N1 is N - 1,

4 fact(N1, R1),

5 R is N * R1.� �
>

int

0
− +

⊥

Action λc (fact(N,R)) λt λs (fact(N,R))

init N/int,R/> - -

it 1 (l. 1) N/int,R/> - N/0,R/+

(l. 2) N/int,R/> N/+,N1/0,R1/+ N/+,R/+

store t N/int,R/> - N/int,R/+

it 2 (l. 2) N/int,R/> - N/int,R/+

Analysis:

〈fact(N,R), (N/int,R/>),⊥〉
〈fact(N,R), (N/int,R/>), (N/0,R/+)〉
〈fact(N,R), (N/int,R/>), (N/int,R/+)〉

Multivariant Assertion-based Guidance in Abstract Interpretation 16

Analyzing factorial

Qα = {fact(N, R) : int(N)}�
1 fact(0,1).

2 fact(N,R) :- N > 0, % <-- analyzing

3 N1 is N - 1,

4 fact(N1, R1),

5 R is N * R1.� �
>

int

0
− +

⊥

Action λc (fact(N,R)) λt λs (fact(N,R))

init N/int,R/> - -

it 1 (l. 1) N/int,R/> - N/0,R/+

(l. 2) N/int,R/> N/+,N1/0,R1/+ N/+,R/+

store t N/int,R/> - N/int,R/+

it 2 (l. 2) N/int,R/> - N/int,R/+

Analysis:

〈fact(N,R), (N/int,R/>),⊥〉
〈fact(N,R), (N/int,R/>), (N/0,R/+)〉
〈fact(N,R), (N/int,R/>), (N/int,R/+)〉

Multivariant Assertion-based Guidance in Abstract Interpretation 16

Meaning of a set of assertions for a predicate

Assertion Conditions

Given a predicate represented by a normalized atom Head , and a corresponding set

of assertions A = {A1 . . .An}, with Ai = “:- pred Head:Prei => Posti.”. The set

of assertion conditions for Head determined by A is {C0,C1, . . . ,Cn}, with:

Ci =

{
calls(Head ,

∨n
j=1 Prej) i = 0

success(Head ,Prei ,Posti) i = 1..n

�
1 :- trust pred fact(N, R) => (int(N), R > 0).

2 :- trust pred fact(N, R) : N > 1 => even(R).� �
Assertion conditions from fact/2:

Ci =

calls(fact(N,R), (true ∨ N > 1)),

success(fact(N,R), true , (int(N),R > 0)),

success(fact(N,R), N > 1 , even(R)),

Multivariant Assertion-based Guidance in Abstract Interpretation 17

Intuition of the fixpoint algorithm with guidance

GuidedAnalyze(Qα,P)

input global: Qα (initial abstract queries), P (program).

output global: A, E (analysis-like tuple set – to capture user errors)

a[Li , λi]← ⊥ for all Li :λi ∈ Qα, changes ← true

E ← ∅ . new!

while changes do

changes ← false

W = get tuples to update()

for each (G , λc , cl) ∈ W do

λt ← abs call(G , λc , cl.head)

λt ← solve body(cl.body, λt)

λs0 ← abs proceed(G , cl.head, λt)

λs′ ← apply succ(G , λc , λs0 , a[G , λc])• . new!

if λs′ 6= a[G , λc] then

a[G , λc]← λs′ , changes ← true

• includes t (lub) and widening

function solve body(B, λt)

for each L ∈ B do

λc ← abs project(L, λt)

λc′ ← apply call(L, λc)• . new!

λs ← solve(L, λc′)

λt ← abs extend(L, λs , λt)

return λt

E is used to find incompatibilities between assertions and the information inferred

(online or offline).

Assertions may be applied to regain precision or to gain performance.

Multivariant Assertion-based Guidance in Abstract Interpretation 18

Intuition of the fixpoint algorithm with guidance

GuidedAnalyze(Qα,P)

input global: Qα (initial abstract queries), P (program).

output global: A, E (analysis-like tuple set – to capture user errors)

a[Li , λi]← ⊥ for all Li :λi ∈ Qα, changes ← true

E ← ∅ . new!

while changes do

changes ← false

W = get tuples to update()

for each (G , λc , cl) ∈ W do

λt ← abs call(G , λc , cl.head)

λt ← solve body(cl.body, λt)

λs0 ← abs proceed(G , cl.head, λt)

λs′ ← apply succ(G , λc , λs0 , a[G , λc])• . new!

if λs′ 6= a[G , λc] then

a[G , λc]← λs′ , changes ← true

• includes t (lub) and widening

function solve body(B, λt)

for each L ∈ B do

λc ← abs project(L, λt)

λc′ ← apply call(L, λc)• . new!

λs ← solve(L, λc′)

λt ← abs extend(L, λs , λt)

return λt

E is used to find incompatibilities between assertions and the information inferred

(online or offline).

Assertions may be applied to regain precision or to gain performance.

Multivariant Assertion-based Guidance in Abstract Interpretation 18

Intuition of the fixpoint algorithm with guidance

GuidedAnalyze(Qα,P)

input global: Qα (initial abstract queries), P (program).

output global: A, E (analysis-like tuple set – to capture user errors)

a[Li , λi]← ⊥ for all Li :λi ∈ Qα, changes ← true

E ← ∅ . new!

while changes do

changes ← false

W = get tuples to update()

for each (G , λc , cl) ∈ W do

λt ← abs call(G , λc , cl.head)

λt ← solve body(cl.body, λt)

λs0 ← abs proceed(G , cl.head, λt)

λs′ ← apply succ(G , λc , λs0 , a[G , λc])• . new!

if λs′ 6= a[G , λc] then

a[G , λc]← λs′ , changes ← true

• includes t (lub) and widening

function solve body(B, λt)

for each L ∈ B do

λc ← abs project(L, λt)

λc′ ← apply call(L, λc)• . new!

λs ← solve(L, λc′)

λt ← abs extend(L, λs , λt)

return λt

E is used to find incompatibilities between assertions and the information inferred

(online or offline).

Assertions may be applied to regain precision or to gain performance.

Multivariant Assertion-based Guidance in Abstract Interpretation 18

Intuition of the fixpoint algorithm with guidance

GuidedAnalyze(Qα,P)

input global: Qα (initial abstract queries), P (program).

output global: A, E (analysis-like tuple set – to capture user errors)

a[Li , λi]← ⊥ for all Li :λi ∈ Qα, changes ← true

E ← ∅ . new!

while changes do

changes ← false

W = get tuples to update()

for each (G , λc , cl) ∈ W do

λt ← abs call(G , λc , cl.head)

λt ← solve body(cl.body, λt)

λs0 ← abs proceed(G , cl.head, λt)

λs′ ← apply succ(G , λc , λs0 , a[G , λc])• . new!

if λs′ 6= a[G , λc] then

a[G , λc]← λs′ , changes ← true

• includes t (lub) and widening

function solve body(B, λt)

for each L ∈ B do

λc ← abs project(L, λt)

λc′ ← apply call(L, λc)• . new!

λs ← solve(L, λc′)

λt ← abs extend(L, λs , λt)

return λt

E is used to find incompatibilities between assertions and the information inferred

(online or offline).

Assertions may be applied to regain precision or to gain performance.

Multivariant Assertion-based Guidance in Abstract Interpretation 18

Intuition of the fixpoint algorithm with guidance

GuidedAnalyze(Qα,P)

input global: Qα (initial abstract queries), P (program).

output global: A, E (analysis-like tuple set – to capture user errors)

a[Li , λi]← ⊥ for all Li :λi ∈ Qα, changes ← true

E ← ∅ . new!

while changes do

changes ← false

W = get tuples to update()

for each (G , λc , cl) ∈ W do

λt ← abs call(G , λc , cl.head)

λt ← solve body(cl.body, λt)

λs0 ← abs proceed(G , cl.head, λt)

λs′ ← apply succ(G , λc , λs0 , a[G , λc])• . new!

if λs′ 6= a[G , λc] then

a[G , λc]← λs′ , changes ← true

• includes t (lub) and widening

function solve body(B, λt)

for each L ∈ B do

λc ← abs project(L, λt)

λc′ ← apply call(L, λc)• . new!

λs ← solve(L, λc′)

λt ← abs extend(L, λs , λt)

return λt

E is used to find incompatibilities between assertions and the information inferred

(online or offline).

Assertions may be applied to regain precision or to gain performance.

Multivariant Assertion-based Guidance in Abstract Interpretation 18

Intuition of the fixpoint algorithm with guidance

GuidedAnalyze(Qα,P)

input global: Qα (initial abstract queries), P (program).

output global: A, E (analysis-like tuple set – to capture user errors)

a[Li , λi]← ⊥ for all Li :λi ∈ Qα, changes ← true

E ← ∅ . new!

while changes do

changes ← false

W = get tuples to update()

for each (G , λc , cl) ∈ W do

λt ← abs call(G , λc , cl.head)

λt ← solve body(cl.body, λt)

λs0 ← abs proceed(G , cl.head, λt)

λs′ ← apply succ(G , λc , λs0 , a[G , λc])• . new!

if λs′ 6= a[G , λc] then

a[G , λc]← λs′ , changes ← true

• includes t (lub) and widening

function solve body(B, λt)

for each L ∈ B do

λc ← abs project(L, λt)

λc′ ← apply call(L, λc)• . new!

λs ← solve(L, λc′)

λt ← abs extend(L, λs , λt)

return λt

E is used to find incompatibilities between assertions and the information inferred

(online or offline).

Assertions may be applied to regain precision or to gain performance.

Multivariant Assertion-based Guidance in Abstract Interpretation 18

Analyzing factorial with guidance

Qα = {fact(N, R) : int(N)}�
1 :- trust pred fact(N,R) : int(N) => (int(N), R > 0).

2 fact(0,1).

3 fact(N,R) :- N > 0,

4 N1 is N - 1,

5 fact(N1, R1),

6 R is N * R1.� �

>

int

0
− +

⊥

Action λc (fact(N,R)) λt λs (fact(N,R))

init N/int,R/> - -

it 1 (l. 2) N/int,R/> - N/int,R/+

(l. 3) N/int,R/> N/+,N1/int,R1/+ N/int,R/+

Analysis:

〈fact(N,R), (N/int,R/>),⊥〉

〈fact(N,R), (N/int,R/>),⊥〉
〈fact(N,R), (N/int,R/>), (N/int,R/+)〉

One step less!

Multivariant Assertion-based Guidance in Abstract Interpretation 19

Analyzing factorial with guidance

Qα = {fact(N, R) : int(N)}�
1 :- trust pred fact(N,R) : int(N) => (int(N), R > 0).

2 fact(0,1). % <-- analyzing

3 fact(N,R) :- N > 0,

4 N1 is N - 1,

5 fact(N1, R1),

6 R is N * R1.� �

>

int

0
− +

⊥

Action λc (fact(N,R)) λt λs (fact(N,R))

init N/int,R/> - -

it 1 (l. 2) N/int,R/> - N/int,R/+

(l. 3) N/int,R/> N/+,N1/int,R1/+ N/int,R/+

Analysis:

〈fact(N,R), (N/int,R/>),⊥〉
〈fact(N,R), (N/int,R/>), (N/int,R/+)〉

One step less!

Multivariant Assertion-based Guidance in Abstract Interpretation 19

Analyzing factorial with guidance

Qα = {fact(N, R) : int(N)}�
1 :- trust pred fact(N,R) : int(N) => (int(N), R > 0).

2 fact(0,1).

3 fact(N,R) :- N > 0, % <-- analyzing

4 N1 is N - 1,

5 fact(N1, R1),

6 R is N * R1.� �

>

int

0
− +

⊥

Action λc (fact(N,R)) λt λs (fact(N,R))

init N/int,R/> - -

it 1 (l. 2) N/int,R/> - N/int,R/+

(l. 3) N/int,R/> N/+,N1/int,R1/+ N/int,R/+

Analysis:

〈fact(N,R), (N/int,R/>),⊥〉
〈fact(N,R), (N/int,R/>), (N/int,R/+)〉

One step less!

Multivariant Assertion-based Guidance in Abstract Interpretation 19

Analyzing factorial with guidance

Qα = {fact(N, R) : int(N)}�
1 :- trust pred fact(N,R) : int(N) => (int(N), R > 0).

2 fact(0,1).

3 fact(N,R) :- N > 0, % <-- analyzing

4 N1 is N - 1,

5 fact(N1, R1),

6 R is N * R1.� �

>

int

0
− +

⊥

Action λc (fact(N,R)) λt λs (fact(N,R))

init N/int,R/> - -

it 1 (l. 2) N/int,R/> - N/int,R/+

(l. 3) N/int,R/> N/+,N1/int,R1/+ N/int,R/+

Analysis:

〈fact(N,R), (N/int,R/>),⊥〉
〈fact(N,R), (N/int,R/>), (N/int,R/+)〉

One step less!

Multivariant Assertion-based Guidance in Abstract Interpretation 19

Fundamental results

Assertions are correctly applied during analysis.

Lemma (Applied success conditions)

The abstract success states inferred are covered by the success assertion

conditions (if exist), i.e., there are no inferred states that escape the

annotated assertions:

∀〈L, λc , λs〉 ∈ A, success(H,Pre,Post) ∈ C s.t. L = σ(H)

λc w λ−
TS(σ(Pre),P) ⇒ λs v λ+

TS(σ(Post),P).

Lemma (Applied call conditions)

The abstract call states inferred are covered by the call assertion conditions:

∀〈L, λc , λs〉 ∈ A, calls(H,Pre) ∈ C , ∃ σ L = σ(H)⇒ λc v λ+
TS(σ(Pre),P).

Multivariant Assertion-based Guidance in Abstract Interpretation 20

Correct trusted assertions

Correctness of assertions with respect to the concrete semantics:

Definition (Correct trust call conditions)

A condition calls(H,Pre) is correct if

∀L ∈ P, ∀θc ∈ calling context(L,P,Q)∃ σ, L = σ(H)⇒ θc ∈ γ(λ+
TS(Pre,P))

Definition (Correct trust success conditions)

A condition success(H,Pre,Post) is correct if

∀L ∈ P, θc ∈ γ(λ−
TS(Pre,P)),∃ σ, L = σ(H), L : θc succeeds in P with

θs ⇒ θs ∈ γ(λ+
TS(Post,P)).

Multivariant Assertion-based Guidance in Abstract Interpretation 21

Correctness modulo assertions

Theorem (Correctness modulo assertions)

Given a program P with assertion conditions C and Qα a set of initial

abstract queries. Let Q be the set of concrete queries:

Q = {Lθ | θ ∈ γ(λ) ∧ L :λ ∈ Qα}.

The computed analysis A = {〈L1, λ
c
1, λ

s
1〉, . . . , 〈Ln, λcn, λsn〉} for P with

Qα is correct for P,Q if all conditions are correct.

Multivariant Assertion-based Guidance in Abstract Interpretation 22

Detecting potential user errors

We compare the tuples of E with the description in assertions:

• calls conditions with the λc

• success conditions with the λs if Pre is applicable (to λc).

In general, let:

• λ be the value in a tuple in E .

• λa be the value in the assertion condition.

Use the tuples from E

Warnings: If λ A λa means that applying the assertion (refines the

state) eliminates possible abstract states.

Errors: If λ u λa = ⊥ it means that the inferred information is

incompatible with the condition.

Multivariant Assertion-based Guidance in Abstract Interpretation 23

Summary

Ciao assertions can be used to regain analysis precision, speed up analysis

computation, describe external code, ... + provide specifications. They:

• Can talk about call/success states at procedure (predicate) level.

• Can express multi-variance, i.e., refer to several call/success

situations.

We have:

• Provided an algorithm to apply correctly such assertions.

• Provided means to detect incompatible trust assertions.

• Also, extended the semantics to cover several run-time behaviors

(see paper).

Multivariant Assertion-based Guidance in Abstract Interpretation 24

Summary

Ciao assertions can be used to regain analysis precision, speed up analysis

computation, describe external code, ... + provide specifications. They:

• Can talk about call/success states at procedure (predicate) level.

• Can express multi-variance, i.e., refer to several call/success

situations.

We have:

• Provided an algorithm to apply correctly such assertions.

• Provided means to detect incompatible trust assertions.

• Also, extended the semantics to cover several run-time behaviors

(see paper).

Multivariant Assertion-based Guidance in Abstract Interpretation 24

Thanks!

Multivariant Assertion-based Guidance in Abstract Interpretation 24

Run-time behaviors

Status Use in analyzer Run-time test

(if not discharged at compile-time)

trust yes no (believe and report)

check yes yes

sample-check no optional

Multivariant Assertion-based Guidance in Abstract Interpretation 25

Applying conditions during fixpoint

Condition type λ vs Cond Use Debug

calls(Head ,Pre) λc = Pre any –

λc A Pre λc warning

λc @ Pre Pre –

λc u Pre = ⊥ error error

λc u Pre 6= ⊥ λc u Pre (general) warning

Applicable λc = Pre yes

Pre of λc A Pre no (over-approx.)

succ(Head ,Pre,Post) λc @ Pre yes

λc u Pre = ⊥ no

λc u Pre 6= ⊥ no

succ λs = Post any –

(if applicable) λs A Pre Post warning

λs @ Post λs –

λs u Post = ⊥ error error

λs u Post 6= ⊥ λs u Post (general) warning

Multivariant Assertion-based Guidance in Abstract Interpretation 26

Naive top-down fixpoint algorithm – full

Analyze(Qα,P)

output global: A

a[Li , λi]← ⊥ for all Li :λi ∈ Qα, changes ← true

while changes do

changes ← false

W ← {(G , λc , cl) | a[G , λc] is defined

∧cl ∈ P ∧ ∃σ s.t. G = σ(cl.head)}
for each (G , λc , cl) ∈ W do

λt ← abs call(G , λc , cl.head)

λt ← solve body(cl.body, λt)

λs0 ← abs proceed(G , cl.head, λt)

λs′ ← abs generalize(λs0 , {a[G , λc]})
if λs′ 6= λs then

a[G , λc]← λs′ , changes ← true

function solve body(B, λt)

for each L ∈ B do

λc ← abs project(L, λt)

Calls = {λ | a[H, λ′] is defined

∧ ∃σ s.t. σ(H) = L ∧ λ = σ(λ′)}
λc′ ← abs generalize(λc ,Calls)

λs ← solve(L, λc′)

λt ← abs extend(L, λs , λt)

return λt

Multivariant Assertion-based Guidance in Abstract Interpretation

Naive fixpoint algorithm with guidance – full

GuidedAnalyze(Qα,P)

output global : A, E

a[Li , λi]← ⊥ for all Li :λi ∈ Qα, changes ← true

E ← ∅
while changes do

changes ← false

W ← {(G , λc , cl) | a[G , λc] is defined ∧cl ∈ P ∧ ∃σ s.t.

G = σ(cl.head)}
for each (G , λc , cl) ∈ W do

λt ← abs call(G , λc , cl.head)

λt ← solve body(cl.body, λt)

λs0 ← abs proceed(G , cl.head, λt)

λs′ ← apply succ (G , λc , λs0 , a[G , λc])

if λs′ 6= λs then

a[G , λc]← λs′ , changes ← true . Fixpoint not

reached

function solve body(B, λt)

for each L ∈ B do

λc ← abs project(L, λt)

λc′ ← apply call(L, λc)

λs ← solve(L, λc′)

λt ← abs extend(L, λs , λt)

return λt

Multivariant Assertion-based Guidance in Abstract Interpretation

Example - Success to refine result

Taken from Ciao libraries for bit-coded-set operations:�
1 % analyzing with eterms (types) domain (no sharing)

2 bitcode_to_set(0,[]) :- ! .

3 bitcode_to_set(C,S) :-

4 bitcode_to_set(C,0,S) .

5

6 :- trust pred bitcode_to_set(A, B, C) => list(C).

7 bitcode_to_set(0,_,[]) :- ! .

8 bitcode_to_set(Code,Num,LNum):-

9 ((Code /\ 1) =\= 0 ->

10 LNum = [Num|Tail]

11 ; LNum = Tail), % eterms domain loses precision

12 NNum is Num + 1,

13 NCode is Code >> 1,

14 bitcode_to_set(NCode,NNum,Tail) .� �
This code uses an accumulator for efficiency. Trust can be obtained from

the same domain using the same program without accumulator.

Multivariant Assertion-based Guidance in Abstract Interpretation

Example - Success to describe libraries

�
1 :- trust pred get_code(X) => int(X).

2 :- trust pred put_code(X) => int(X).

3

4 main(X) :-

5 print(’Starting to Filter’),nl,

6 filter.

7

8 filter :-

9 get_code(X),

10 filt(X),

11 filter.

12

13 filt(X) :-

14 0 is X mod 2, !,

15 put_code(X).

16 filt(_).� �
Multivariant Assertion-based Guidance in Abstract Interpretation

Example - Calls

�
1 append([], L, L).

2 append([X|Xs], L, [X|As]) :-

3 append(Xs, L, As).� �
Analysis result: 〈append(L1, L2, L3), (L1/>, L2/>, L3/>), (L1/list, L2/>, L3/>)〉�

1 :- trust pred append(L1,L2,L3) : list(L2).

2 append([], L, L).

3 append([X|Xs], L, [X|As]) :-

4 append(Xs, L, As).� �
Analysis result: 〈append(L1, L2, L3), (L1/>, L2/list, L3/>), (L1/list, L2/list, L3/list)〉

Multivariant Assertion-based Guidance in Abstract Interpretation

	Appendix

