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Goal of the paper

We propose an analysis algorithm  that reacts incrementally  to changes in
the program, understanding the type of program edit  .

• In particular, it distinguishes between assertion edits  and clause edits  .

Our contributions  are:

• An incremental fixpoint algorithm  that reacts to changes in both the
program and the assertions  .

• An application of this approach to the scalable analysis of generic
programming (based on open predicates  ).
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(And we also propose an encoding of generic programming in (Ciao) Prolog.)
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Target language

Our analyzer supports several languages by translation to Horn Clauses.

For concreteness we focus on Prolog programs. The concrete semantics is
goal-dependent and based on generalized and trees:

• An and tree represents the execution of a program.

• A node represents a call to a predicate and contains:

• The program state for that call.
• The program state at call exit, if the call succeeds or ⊥.
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The Ciao assertion language

Assertions express abstractions of the behavior of programs.

pred assertions (subset)

:- pred Head [: Pre] [=> Post].

• Head: predicate that the assertion applies to.

• Pre: properties about how the predicate is used.

• Post: properties that hold if Pre holds and the predicate succeeds.

�
1 :− pred dgst(Word,N) : (str(Word), var(N)) => int(N).
2 :− pred dgst(Word,N) : (str(Word), int(N)).� �
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Meaning of a set of assertions for a predicate

Assertion Conditions
Given a predicate represented by a normalized atom Head, and a corresponding set
of assertions A = {A1 . . . An}, with Ai = “:- pred Head:Prei => Posti.”. The set
of assertion conditions  for Head determined by A is {C0, C1, . . . , Cn}, with:

Ci =
{

calls(Head,
∨n
j=1 Prej) i = 0

success(Head, Prei, Posti) i = 1..n

�
1 :− pred dgst(Word,N) : (str(Word), var(N)) => int(N).
2 :− pred dgst(Word,N) : (str(Word), int(N)).� �

Assertion conditions from dgst/2:

Ci =
{

calls( dgst(N, R), ((str(Word), var(N)) ∨ (str(Word), int(N)))),
success( dgst(N, R), (str(Word), var(N)) , int(N)),

}
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Assertions in action

�
1 :− pred dgst(Word,N) : (str(Word), var(N)) => int(N).
2 :− pred dgst(Word,N) : (str(Word), int(N)).� �
?- dgst("password", X).

X = 42.

yes

?- dgst("password", 35).

no

?- dgst(P, 42).

ERROR

The execution is stopped  when the assertion conditions are not met.
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Abstract Interpretation [Cousot POPL’77]

Simulates the execution of programs using abstract domains. It guarantees:

• Analysis termination, provided that the domain meets some conditions.
• Results are safe approximations of the concrete semantics.

In our setting  : for all the predicate calls we obtain a mapping ⟨Goal, λc⟩ 7→ λs , where:
• Goal is an atom (identifier of the predicate).
• λc is a (possible) call pattern to Goal.
• λs is the answer pattern to Goal and λc if succeeds.

Example�
1 fact(0,1).
2 fact(N,R) :− N > 0,
3 N1 is N − 1,
4 fact(N1,R1),
5 R is N * R1.� �

Analysis result (example):
{⟨fact(N,R),⊤⟩ 7→ R/+
For any call to fact that succeeds R is positive.
⟨fact(N,R),N/−⟩ 7→ ⊥
If fact is called with N a negative number, it fails. }

We store dependencies between calls:

⟨P, λ⟩i,j
λp−−→
λr

⟨Q, λ′⟩, Calling P with λ causes Q to be called with λ′ .
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⊤

b (bit)

z (0) o (1)

⊥

Example – Analysis graph

�
1 dgst(Msg, P) :−
2 par(Msg, 0, P).
3

4 par([], P, P).
5 par([C|Cs], P0, P) :−
6 xor(C, P0, P1),
7 par(Cs, P1, P).
8

9 xor(1,1,0).
10 xor(0,1,1).
11 xor(B,0,B).� �

⟨dgst(M, P),
⊤⟩ 7→ ⊤

⟨par(M, X, P),
X/z⟩ 7→ X/z

⟨par(M, X, P),
⊤⟩ 7→ X/b

⟨xor(C, P0, P1),

P0/z⟩ 7→ P0/z

⟨xor(C, P0, P1),

P0/b⟩ 7→ P0/b

1,1

2,1

2,2

2,1

2,2
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⊤

b (bit)

z (0) o (1)

⊥

Example – Analysis graph with assertions

�
1 dgst(Msg, P) :−
2 par(Msg, 0, P).
3

4 par([], P, P).
5 par([C|Cs], P0, P) :−
6 xor(C, P0, P1),
7 par(Cs, P1, P).
8

9 :− pred xor(A,B,C) :
(bit  (A), bit  (B)).

10 xor(1,1,0).
11 xor(0,1,1).
12 xor(B,0,B).� �

⟨dgst(M, P),
⊤⟩ 7→ P/b

⟨par(M, X, P),
X/z⟩ 7→
(X/z, P/b)

⟨par(M, X, P),
X/b⟩ 7→
(X/b, P/b)

⟨xor(C, P0, P1),

(C/b, P0/z)⟩ 7→
(C/b, P0/z, P1/b)

⟨xor(C, P0, P1),

(C/b, P0/b)⟩ 7→
(C/b, P0/b, P1/b)

1,1

2,1

2,2

2,1

2,2
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How do assertions affect the analysis result?

Assertions state properties that are guaranteed to hold.

• Call conditions  – calls(P, Cond) – are applied when the abstract call is
performed. I.e., after parameter passing and renaming.

• Success conditions  – success(P, Call, Succ) – are applied when the
abstract success is performed. I.e., for each of the clauses, after the
last literal is processed  .

9



Baseline: the PLAI incremental analyzer [NACLP’89, TOPLAS’00]

Input Qα: initial abstract queries
P’: target program (changed)
∆P: clauses  that changed from P to P’
A : (partial) analysis results of P

Output A ′: analysis graph abstracting all the execution and trees
of (concrete) queries for which Qα holds.

Our goal:

• extend the algorithm to react incrementally changes in the assertions  ,
• by preprocessing the previous analysis results A   before calling the

incremental fixpoint analyzer

(while preserving, of course, soundness and precision).

The proposed analysis is interprocedural, multivariant, and context
sensitive.

10
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Algorithm – high-level idea

IncAnalyze-w/AssrtChanges(Program,∆Cls,∆As,Q,A )
R := ∅
for each predicate p ∈ Program do

if assertions changed then
R.add(update_calls_pred(p))
R.add(update_success_pred(p))

A ′ := IncAnalyze(Program,∆Cls,Q ∪ R,A )

Remove unreachable calls
return A ′

11



Algorithm – finding changes

update_calls_pred(P)
Q := ∅
for each Nc,l −−→ ⟨P, λcold⟩ ∈ A do

λc get original call substitution  
λcnew := apply_call(P, λc)
λs′ obtain success substitution
Q.add(treat_change(Nc,l −−→ ⟨P, λcnew⟩, λs′))

return Q
⟨P, λcold⟩ 7→ λs

c 1
,
l 1

c 2
, l 2

cn,
ln

update_successes_pred(P)

Q := ∅
for each ⟨P, λc⟩ 7→ λs ∈ A do

λ get original success (via apply_success)  
for each E ∈ incoming edges ⟨P, λc⟩ ∈ A do

Q.add(treat_change (E, λ))
return Q

⟨P, λc⟩ 7→ λs

c1 , llastcn , llast
c2 , llast

c 1
,
l 1

c 2,
l 2

cn, ln
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Algorithm – amending the analysis result

treat_change(⟨P, λ⟩c,l λp−−→
λr

⟨Q, λc⟩, λs)

λr′ := Obtain new info at literal return and update edge
if λr ⊏ λr′ then

return {⟨P, λ⟩}
else if λr ̸⊑ λr′ then

Remove potentially imprecise nodes
return initial queries of deleted nodes

else return ∅

13



A use case: Generic programming

We support describing collections of predicate specifications, called traits  in
Ciao (similar to C++ virtual classes, Rust boxed traits, Go interfaces, etc).

�
1 :− trait hasher {
2 :− pred dgst(Str, Digest) : str(Str) => int(Digest).
3 }.� �

A call to a generic predicate: (X as T).p(A1,...,An)  , represents the
predicate p  for X  implementing T  .

Example�
1 check_passwd(User) :−
2 get_line(Plain),
3 passwd(User,Hasher,Digest,Salt),
4 append(Plain,Salt,Salted),
5 (Hasher as hasher).dgst(Salted,Digest).  � �
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Open predicates for generic programming

Open predicates (also referred to as multifile)  : their clauses can be scattered
across different modules.�

1 :− multifile 'T.p'/(n + 1).
2 :− pred 'T.p'(X, A1, . . . , An) : . . . => . . . . % A  � �

Call to p/n for X implementing T�
1 . . . :− . . ., 'T.p'(X, A1, . . . , An), % (X as T).p(A1, . . . , An)� �

G A

Impl

Impl
Impl

Implementation closed predicate (head renamed)�
1 '<f/k as T>.p'(f(. . .), A1, . . . , An) :− . . . % (f(. . .) as T).p(A1, . . . , An) % Impl� �

Bridge from interface open predicate to implementation�
1 'T.p'(X, A1, . . . , An) :− X=f(. . .), '<f/k as T>.p'(X, A1, . . . , An). % −→� �

�
1 :− impl(hasher, xor8/0).
2 (xor8 as hasher).dgst(Str, Digest) :− xor8_dgst(Xs, 0, Digest).
3

4 xor8_dgst([], D, D).
5 xor8_dgst([X|Xs], D0, D) :− D1 is D0 # X, xor8_dgst(Xs, D1, D).� �
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Open predicates (also referred to as multifile)  : their clauses can be scattered
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1 :− multifile 'T.p'/(n + 1).
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G A
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Impl
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Example: Adding an implementation�
1 :− trait hasher {
2 :− pred dgst(Str, Digest)
3 : lowercase(Str) => int(Digest).
4 }.
5
6 check_passwd(User) :−
7 get_line(Plain),
8 passwd(User,Hasher,Digest,Salt),
9 append(Plain,Salt,Salted),

10 (Hasher as hasher).dgst(Salted,Digest).
11
12 passwd(don,xor8,0x6d,"eNfwuBhtN9CUHxg==").� �

�
1 :− impl(hasher, naive/0).
2 (naive as hasher).dgst(Str, Digest) :−
3 naive_count(Xs, 0, Digest).
4
5 naive_count(L, D0, D) :−
6 count(L,'a',Na), D1 is D0 + Na*1,
7 count(L,'b',Nb), D2 is D1 + Nb*2,
8 count(L,'c',Nc), D3 is D2 + Nc*3,
9 %% implementation continues� �

check_passwd/1 get_line/2

passwd/4

append/3

dgst/2

naive_count/2

count/2

1,1

1,2

1,3

1,4

1,1
1,2

1,1 1,
3
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Example: Changing an assertion�
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Experiments

We tested the proposed algorithm with an application, LPdoc, a documentation
generator for logic programs which has:

• A generic interface for back ends for different documentation formats.
• Several such back ends.
• 150 files, of mostly (Ciao) Prolog code.
• Assertions originally meant for documentation.
• 22K lines of code.

Analysis time adding one backend at a time (time in seconds):

domain no backend + texinfo + man + html
reachability 1.7 2.1 3.4 3.9

reachability inc  1.7 1.2 1.0 1.6
gr 2.1 2.2 2.3 2.6

gr inc  2.1 1.4 0.9 1.8
def 6.0 7.1 7.8 9.7

def inc  6.0 2.2 1.3 3.5
sharing 27.2 28.1 24.2 28.5

sharing inc  27.2 3.9 1.4 5.1
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Related work

• Mora et al. (ASE 2018) perform modular symbolic execution to prove
that some (versions of) libraries are equivalent with respect to the
same client  .

• Chatterjee et al. (POPL 2018) analyze libraries in the presence of
callbacks  incrementally for data dependence analysis.
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Conclusions

• We have proposed a context-sensitive program analysis algorithm that
(re)computes summaries for predicates, reacting incrementally to fine
grain changes in (multivariant) assertions and the program.

• As a specific application of the algorithm we proposed an approach to
the analysis of generic code, in a way that we can efficiently specialize
the analysis result as implementations become available.

• We have provided a syntax to build generic programs in Prolog using
traits.

• We have applied running this algorithm in a fairly large tool (LPdoc),
which shows promising results.

Thanks!
Check out the tool: https://github.com/ciao-lang/ciaopp
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Full version of the algorithm

function IncAnalyze-w/AssrtChanges((Cls, As),∆Cls,∆As,Q,A )
R := ∅
for each P ∈ Cls do

if ∆As[P] ̸= ∅ then
R := R ∪ update_calls_pred(P)
R := R ∪ update_success_pred(P)

A ′ := IncAnalyze((Cls, As),∆Cls,Q ∪ R,A )

del (A ′, {E | E ∈ A ′ ∧ Q ̸⇝ E ∧ Q ∈ Q}) ▷ Remove unreachable calls
return A ′



Full version of the algorithm

function update_calls_pred(P)
Q := ∅
for each ⟨P′, λ⟩c,l λp−−→ ⟨P, λcold⟩ ∈ A do

λc := σ(abs_project(λp, vars(P′c,l)) s.t. σ(P′c,l) = P ▷ Original call
λcnew := apply_call(P, λc)
if ∃⟨P′, λcnew⟩ 7→ λs ∈ A then ▷ A node for that call already exist

λs′ := λs

else λs′ := ⊥
Q := Q ∪ treat_change(⟨P′, λ⟩c,l λp−−→

λr
⟨P, λcnew⟩, λs′)

return Q
function update_successes_pred(P)

Q := ∅
for each ⟨P, λc⟩ 7→ λs ∈ A do

λ := ⊥
for each ⟨P, λc⟩c,last −−→

λr
⟨Q, λ⟩ ∈ A do ▷ Original success

λ := λ ⊔ apply_success(P, λc, abs_project(λr, vars(Pc)))
for each E = N•,•

•−−→
•

⟨P, λc⟩ ∈ A do ▷ Affected literals

Q := Q ∪ treat_change (E, λ)
return Q



Full version of the algorithm

function treat_change(⟨P, λ⟩c,l λp−−→
λr

⟨Q, λc⟩, λs)

λr′ := abs_extend(λp, λs) ▷ Obtain new info at literal return
del(A , ⟨P, λ⟩c,l •−−→

•
•)

add(A , ⟨P, λ⟩c,l λp−−→
λr′

⟨Q, λc⟩)

if λr ⊏ λr′ then
return {⟨P, λ⟩} ▷ Restart the analysis for this predicate and call pattern

else if λr ̸⊑ λr′ then ▷ Analysis is potentially imprecise
Lits := {E | E = ⟨P, λ⟩c,i −−→ N ∈ A ∧ i > l} ▷ Following literals
IN := {E | E⇝ L ∈ A ∧ L ∈ Lits} ▷ Potentially imprecise nodes
Q = IN ∩ Q ▷ Entry point of potentially imprecise nodes
del(A , IN)
return Q

else return ∅
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